Antibodies to receptor protein tyrosine kinases

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S387900, C530S388220, C424S133100, C424S139100, C424S142100, C424S143100, C435S325000, C435S326000, C435S329000, C435S330000, C435S372100

Reexamination Certificate

active

06825324

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This application relates to novel protein tyrosine kinases, the nucleic acid sequences encoding these proteins, the extracellular domains of the proteins, ligands to the protein tyrosine kinases, antibodies specific for the encoded proteins and methods of use therefor. In particular, this application relates to the novel receptor protein tyrosine kinases designated Rse and HPTK6.
2. Description of Related Art
Intracellular signals which control cell growth and differentiation are often mediated by tyrosine kinase proteins. Tyrosine kinases catalyze protein phosphorylation using tyrosine as a substrate for phosphorylation. Members of the tyrosine kinase family can be recognized by the presence of several conserved amino acid regions in the tyrosine kinase catalytic domain (Hanks et al.,
Science:
241: 42-52 [1988]). The tyrosine kinase domain is crucial for the signal transduction pathways required for mitogenesis, transformation and cell differentiation. Certain tyrosine kinases predominantly stimulate cell growth and differentiation, whereas other tyrosine kinases arrest growth and promote differentiation. Furthermore, depending on the cellular environment in which it is expressed, the same tyrosine kinase may either stimulate, or inhibit, cell proliferation (Schlessinger et al.,
Neuron,
9: 383-391 [1992]).
Tyrosine kinase proteins can be classified as either receptor tyrosine kinases or intracellular tyrosine kinases. Receptor tyrosine kinases (rPTKs) convey extracellular signals to intracellular signaling pathways thereby controlling cell proliferation and differentiation. These rPTKs share a similar architecture, with an intracellular catalytic portion, a transmembrane domain and an extracellular ligand-binding domain. (Schesslinger et al., supra). The extracellular domains (ECDs), which are responsible for ligand binding and transmission of biological signals, have been shown to be composed of a number of distinct structural motifs. The intracellular domain comprises a catalytic protein tyrosine kinase. The binding of ligand to the extracellular portion is believed to promote dimerization of the rPTK resulting in transphosphorylation and activation of the intracellular tyrosine kinase domain. In addition to their catalytic function, the intracellular domains (ICDs) of rPTKs may also serve as binding sites for other components of the signal transduction pathway. In particular, some proteins containing src-homology 2 (SH2) domains have been shown to interact in a phosphorylation-dependent and sequence specific manner to specific tyrosine residues within the ICD (Cantley et al.,
Cell,
64: 281-302 [1991]).
A large number of protein tyrosine kinases have been characterized on the basis of their amino acid and nucleic acid sequences. For a review of these proteins see Hanks et al., supra.
WO 93/15201 discloses isolation of several novel rPTK genes found in human megakaryocytic and lymphocytic cells using degenerate oligonucleotide probes as primers in a polymerase chain reaction (PCR) to amplify tyrosine kinase DNA segments.
The recent publication by Johnson et al.,
Proc. Natl. Acad. Sci.,
90: 5677-5681 (1993) discusses the characterization of a receptor tyrosine kinase called discoidin domain receptor (i.e., DDR) which is abundantly expressed in breast carcinoma cell lines. DDR is considered to have two features not found in other receptor tyrosine kinases. First, a region of the amino acid sequence near the N terminus of DDR contains a “discoidin I-like domain”. This determination was based on the sequence identity between this region and the protein, discoidin I (see FIG. 5 of Johnson et al.). Discoidin I-like domains are present as tandem repeats at the C terminus of the light chains of factor V (Kane, W. H. & Davie, E. W.,
Proc. Natl. Acad. Sci.,
83: 6800-6804 [1986]), factor VIII (Toole et al.,
Nature
(
London
), 312: 342-347 [1984]) and Vehar et al.,
Nature
(
London
), 312: 337-342 [1984], and two milk fat globule membrane proteins, MFG.E8 (see Stubbs et al.,
Proc. Natl. Acad. Sci.,
87: 8417-8421 [1991]) and BA46 (see Larocca et al.,
Cancer Res.,
51: 4994-4998 [1991]). Second, the DDR protein has an extensive proline/glycine-rich region between the discoidin I-like domain and the transmembrane domain and another such region between the transmembrane domain and the C-terminal tyrosine kinase domain. These proline/glycine-rich regions are not found in other receptor protein tyrosine kinases. The catalytic domain of DDR shares 45% sequence identity with the trk protein catalytic domain disclosed in Martin-Zanca et al.,
Mol. Cell. Biol.,
9:24-33 (1989). Zerlin et al. disclose isolation of the murine equivalent of the DDR rPTK found by Johnson et al., which they call NEP (
Oncogene,
8: 2731-2939 [1993]).
WO 92/14748 discloses a receptor, designated KDR, which is classified as a type III receptor tyrosine kinase and binds to vascular endothelial cell growth factor. The type III group of rPTKs includes the c-kit proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).
Matthews et al.,
Proc. Natl. Acad. Sci.,
88: 9026-9030 (1991) refer to the isolation of rPTK clone from a population of hematopoietic murine cells which, like KDR, exhibits a close sequence identity to c-kit. This receptor is called flk-1. The flk-1 receptor was isolated using an anti-sense oligonucleotide primer and anchored PCR. Chromosomal mapping indicated that the flk-1, kit and pdgfra genes are closely linked. Matthews et al.,
Cell,
65: 1143-1152 (1991) discuss isolation of a rPTK called flk-2, from stem cell-enriched murine hematopoietic tissue. U.S. Pat. No. 5,185,438 also refers to the rPTKs, flk-1 and flk-2, which are said to be expressed in primitive hematopoietic cells but not in mature hematopoietic cells.
Lai et al.,
Neuron,
6: 691-704 (1991) used PCR to identify several cDNAs encoding part of the tyrosine kinase domains of various rat rPTKs. The newly isolated sequences were designated tyro-1 to tyro-13. Because preferential expression of several of the sequences in the developing vertebrate nervous system was evidenced, Lai et al. concluded that protein-tyrosine kinases appear to play a central role in neural development.
Holtrich et al.,
Proc. Natl. Acad. Sci.,
88:10411-10415 (1991) studied the expression of protein-tyrosine kinases in normal human lung and tumor cells by PCR followed by molecular cloning and sequence analysis. Six known PTKs (yes, fgr, lyn, hck, pdgfb-r and csfl-r) were detected as well as two new PTKs. One of the proteins detected appeared to be cytosolic. The other PTK, designated TKF, was found to be related to fibroblast growth factor receptor and was only found expressed in the lung.
WO 93/14124 discloses the cloning, sequencing and expression of a human rPTK termed tie which is expressed in cultured endothelial cells as well as tumor cell lines. The extracellular domain (ECD) of tie was found to contain stretches of amino acid sequence having features of the immunoglobulin, epidermal growth factor and fibronectin type III repeat protein families.
Partanen et al.,
Proc. Natl. Acad. Sci.,
87: 8913-8917 (1990) analyzed PCR amplified cDNA clones which lead to the identification of 14 different tyrosine kinase-related sequences, designated JTK1-14. Based on the pattern of expression of the clones, it was suggested that the tyrosine kinases encoded by the complete sequences most probably play a role in the differentiation of megakaryoblasts or in the physiology of platelets.
While Partanen et al. discuss isolation of the partial JTK11 cDNA clone, the later publication by Janssen et al.,
Oncogene,
6: 2113-2120 (1991), reports the cDNA cloning of the entire oncogene (designated UFO) encoding a 894 amino acid polypeptide. Janssen et al. identified the UFO tyrosine kinase receptor by DNA transfection analysis of bone marrow cells from a patient suffering

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antibodies to receptor protein tyrosine kinases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antibodies to receptor protein tyrosine kinases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antibodies to receptor protein tyrosine kinases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3290550

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.