Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Radiation-sensitive composition or product
Reexamination Certificate
2003-02-19
2004-10-05
Goodrow, John L (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Electric or magnetic imagery, e.g., xerography,...
Radiation-sensitive composition or product
C430S058800, C430S059400, C430S060000, C430S064000, C430S065000
Reexamination Certificate
active
06800411
ABSTRACT:
RELATED PATENTS
Illustrated in U.S. Pat. No. 6,015,645, the disclosure of which is totally incorporated herein by reference, is a photoconductive imaging member comprised of a supporting substrate, a hole blocking layer, an optional adhesive layer, a photogenerator layer, and a charge transport layer, and wherein the blocking layer is comprised, for example, of a polyhaloalkylstyrene.
Illustrated in U.S. Pat. No. 6,287,737, the disclosure of which is totally incorporated herein by reference, is a photoconductive imaging member comprised of a supporting substrate, a hole blocking layer thereover, a photogenerating layer and a charge transport layer, and wherein the hole blocking layer is comprised of a crosslinked polymer derived from the reaction of a silyl-functionalized hydroxyalkyl polymer of Formula (I) with an organosilane of Formula (II), and water
wherein A, B, D, and F represent the segments of the polymer backbone; E is an electron transporting moiety; X is selected from the group consisting of halide, cyano, alkoxy, acyloxy, and aryloxy; a, b, c, and d are mole fractions of the repeating monomer units such that the sum of a+b+c+d is equal to 1; R is alkyl, substituted alkyl, aryl, or substituted aryl; and R
1
, R
2
, and R
3
are independently selected from the group consisting of alkyl, aryl, alkoxy, aryloxy, acyloxy, halogen, cyano, and amino, subject to the provision that two of R
1
, R
2
, and R
3
are independently selected from the group consisting of alkoxy, aryloxy, acyloxy, and halide.
Illustrated in U.S. Pat. No. 5,473,064, the disclosure of which is totally incorporated herein by reference, is a process for the preparation of hydroxygallium phthalocyanine Type V, essentially free of chlorine, whereby a pigment precursor Type I chlorogallium phthalocyanine is prepared by reaction of gallium chloride in a solvent, such as N-methylpyrrolidone, present in an amount of from about 10 parts to about 100 parts, and preferably about 19 parts with 1,3-diiminoisoindolene (DI
3
) in an amount of from about 1 part to about 10 parts, and preferably about 4 parts DI
3
, for each part of gallium chloride that is reacted; hydrolyzing the pigment precursor chlorogallium phthalocyanine Type I by standard methods, for example acid pasting, whereby the pigment precursor is dissolved in concentrated sulfuric acid and then reprecipitated in a solvent, such as water, or a dilute ammonia solution, for example from about 10 to about 15 percent; and subsequently treating the resulting hydrolyzed pigment hydroxygallium phthalocyanine Type I with a solvent, such as N,N-dimethylformamide, present in an amount of from about 1 volume part to about 50 volume parts, and preferably about 15 volume parts for each weight part of pigment hydroxygallium phthalocyanine that is used by, for example, ballmilling the Type I hydroxygallium phthalocyanine pigment in the presence of spherical glass beads, approximately 1 millimeter to 5 millimeters in diameter, at room temperature, about 250° C, for a period of from about 12 hours to about 1 week, and preferably about 24 hours.
The appropriate components and processes of the above patents may be selected for the present invention in embodiments thereof.
BACKGROUND
This invention is generally directed to imaging members, and more specifically, the present invention is directed to multi-layered photoconductive imaging members with a photogenerating layer, a charge transport layer, an optional hole blocking, or undercoat layer (UCL) and wherein the charge transport layer contains a polymer binder and a compound containing at least two (methyl)acrylates); that is for example, multi-(methyl)acrylate functional monomers or oligomers and which monomers subsequent to polymerization are converted to polymers. The acrylate compound containing at least two, and more specifically, from about 2 to about 200, and yet more specifically, from about 2 to about 50 acrylate groups, and wherein the number of (methyl)acrylates) in the compound yields tunable physical properties for the crosslinked charge transport layers. Yet more specifically a higher number of (methyl)acrylates in one compound will result in a higher crosslinking density or value percentage in the charge transport layer.
The following are structural formulae of typical examples of a compound with at least two (methyl)acrylates group
In embodiments the photogenerating layer can be situated between the charge transport layer and the supporting substrate, and the hole blocking layer in contact with the supporting substrate can be situated between the supporting substrate and the photogenerating layer, which is comprised, for example, of the photogenerating pigments of U.S. Pat. No. 5,482,811, the disclosure of which is totally incorporated herein by reference, especially Type V hydroxygallium phthalocyanine, and generally metal free phthalocyanines, metal phthalocyanines, hydroxy gallium phthalocyanines, perylenes, titanyl phthalocyanines, selenium, selenium alloys, azo pigments, squaraines, and the like. The imaging members of the present invention in embodiments exhibit excellent cyclic/environmental stability; excellent wear characteristics; extended lifetimes of, for example, up to 3,000,000 imaging cycles; minimum microcracking; elimination/minimization of adverse affect when contacted with a number of solvents such as methylene chloride, tetrahydrofuran and toluene; acceptable and in some instances improved electrical characteristics; compatibility of the charge transport components with the partially crosslinked (methyl)acrylates; excellent imaging member surface properties; and which members can be economically prepared with tunable or preselected crosslinking percentages, depending on the mechanical and other desired member characteristics.
Processes of imaging, especially xerographic imaging, and printing, including digital, are also encompassed by the present invention. More specifically, the photoconductive imaging members of the present invention can be selected for a number of different known imaging and printing processes including, for example, electrophotographic imaging processes, especially xerographic imaging and printing processes wherein charged latent images are rendered visible with toner compositions of an appropriate charge polarity. The imaging members are in embodiments sensitive in the wavelength region of, for example, from about 475 to about 950 nanometers, and in particular from about 650 to about 850 nanometers, thus diode lasers can be selected as the light source. Moreover, the imaging members of this invention are useful in color xerographic applications, particularly high-speed color copying and printing processes.
REFERENCES
Layered photoresponsive imaging members have been described in numerous U.S. patents, such as U.S. Pat. No. 4,265,990, the disclosure of which is totally incorporated herein by reference, wherein there is illustrated an imaging member comprised of a photogenerating layer, and an arylamine hole transport layer. Examples of photogenerating layer components include trigonal selenium, metal phthalocyanines, vanadyl phthalocyanines, and metal free phthalocyanines. Additionally, there is described in U.S. Pat. No. 3,121,006, the disclosure of which is totally incorporated herein by reference, a composite xerographic photoconductive member comprised of finely divided particles of a photoconductive inorganic compound dispersed in an electrically insulating organic resin binder.
The uses of perylene pigments as photoconductive substances are also known. There is thus described in Hoechst European Patent Publication 0040402, DE3019326, filed May 21, 1980, the use of N,N′-disubstituted perylene-3,4,9,10-tetracarboxyldiimide pigments as photoconductive substances. Specifically, there is, for example, disclosed in this publication N,N′-bis(3-methoxypropyl)perylene-3,4,9,10-tetracarboxyl-diimide dual layered negatively charged photoreceptors with improved spectral response in the wavelength region of 400 to 700 nanometers. A similar
Lin Liang-Bih
Tong Yuhua
Wu Jin
Yanus John F.
Goodrow John L
Palazzo Eugene O.
Xerox Corporation
LandOfFree
Photoconductive imaging members does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photoconductive imaging members, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoconductive imaging members will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3290280