Neutrophil inhibitors

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S013800, C514S014800, C514S015800, C530S325000, C530S326000, C530S327000, C530S328000, C530S350000, C930S210000

Reexamination Certificate

active

06818616

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to factors which interact with CD11b/CD18 integrin complex or the I-domain portion of CD11b/CD18 integrin complex and inhibit leukocyte activity. These factors inhibit neutrophil activity, including inhibition of neutrophil activation and adhesion of neutrophils to vascular endothelial cells. These factors also inhibit eosinophil activity, including inhibition of eosinophil adhesion to vascular endothelial cells.
BACKGROUND OF THE INVENTION
Leukocytes are a class of cells comprised of lymphocytes, monocytes and granulocytes. The lymphocytes include within their class, T-cells (as helper T-cells and cytotoxic or suppressor T-cell), B-cells (as circulating B-cells and plasma cells), third population or natural killer (NK) cells and antigen-presenting cells. Monocytes include within their class, circulating blood monocytes, Kupffer cells, intraglomerular mesangial cells, alveolar macrophages, serosal macrophages, microglia, spleen sinus macrophages and lymph node sinus macrophages. Granulocytes include within their class, neutrophils, eosinophils, basophils, mast cells, (as mucosa-associated mast cells and connective tissue mast cells).
Neutrophils are an essential component of the host defense system against microbial invasion. In response to soluble inflammatory mediators released by cells at the site of injury, neutrophils emigrate into tissue from the bloodstream by crossing the blood vessel wall. At the site of injury, activated neutrophils kill foreign cells by phagocytosis and by the release of cytotoxic compounds, such as oxidants, proteases and cytokines. Despite their importance in fighting infection, neutrophils themselves can promote tissue damage. During an abnormal inflammatory response, neutrophils can cause significant tissue damage by releasing toxic substances at the vascular wall or in uninjured tissue. Alternatively, neutrophils that stick to the capillary wall or clump in venules may produce tissue damage by ischemia. Such abnormal inflammatory responses have been implicated in the pathogenesis of a variety of clinical disorders including adult respiratory distress syndrome (ARDS); ischemia-reperfusion injury following myocardial infarction, shock, stroke, and organ transplantation; acute and chronic allograft rejection; vasculitis; sepsis; rheumatoid arthritis; and inflammatory skin diseases (Harlan et al., 1990 Immunol. Rev. 114, 5).
Neutrophil adhesion at the site of inflammation is believed to involve at least two discrete cell-cell interactive events. Initially, vascular endothelium adjacent to inflamed tissue becomes sticky for neutrophils; neutrophils interact with the endothelium via low affinity adhesive mechanisms in a process known as “rolling”. In the second adhesive step, rolling neutrophils bind more tightly to vascular endothelial cells and migrate from the blood vessel into the tissue.
Neutrophil rolling along affected vascular segments and other initial low affinity contacts between neutrophils and the endothelium are reported to be mediated by a group of monomeric, integral membrane glycoproteins termed selecting. All three of the selectins so far identified, that is L-selectin (LECAM-1 or LAM-1) present on the surface of neutrophils, E-selectin (endothelial leukocyte adhesion molecule-1 or ELAM-1) present on endothelial cells and P-selectin (granule membrane protein-140, GMP-140, platelet activation-dependent granule-external membrane protein, PADGEM or CD62) expressed on endothelial cells, have been implicated in neutrophil adhesion to the vascular endothelium (Jutila et al., 1989 J. Immunol 143, 3318; Watson et al., 1991 Nature 349, 164; Mulligan et al., J. Clin. Invest. 88, 1396; Gundel et al., 1991; J. Clin. Invest. 88, 1407; Geng et al., 1990 Nature 343, 757; Patel et al., 1991 J. Cell Biol. 112, 749). The counter-receptor for E-selectin is reported to be the sialylated Lewis X antigen (sialyl-Lewisx) that is present on cell-surface glycoproteins (Phillips et al., 1990 Science 250, 1130; Walz et al., 1990 Science 250, 1132; Tiemeyer et al., 1991 Proc. Natl. Acad. Sci. (USA) 88, 1138; Lowe et al., 1990 Cell 63, 475). Receptors for the other selectins are also thought to be carbohydrate in nature but remain to be elucidated.
The more stable secondary contacts between neutrophils and endothelial cells are reported to be mediated by a class of cell adhesion molecules known as integrins. Integrins comprise a broad range of evolutionarily conserved heterodimeric transmembrane glycoprotein complexes that are present on virtually all cell types. Members of the leukocyte-specific CD18 (&bgr;
2
) family of integrins, which include CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1, Mo-1 or CR3) have been reported to mediate neutrophil adhesion to the endothelium (See Larson and Springer, 1990 Immunol Rev. 114, 181). Endothelial cell counter-receptors for these integrins are the intercellular cell adhesion molecules ICAM-1 and ICAM-2 for CD11a/CD18 and ICAM-1 for CD11b/CD18 respectively (Rothlein et al., 1986 J. Immunol. 137, 1270; Staunton et al., 1988 Cell 52, 925; Staunton et al., 1989 Nature 339, 61). The ICAMs are monomeric transmembrane proteins that are members of the immunoglobulin superfamily.
The CD11b/CD18 integrin is expressed on a variety of leukocytes, including monocytes, macrophages, granulocytes, large granular lymphocytes (NK cells), and immature and CD5
+
B cells (Kishimoto, T. K., Larson, R. S., Corbi, A. L., Dustin, M. L., Staunton, D. E., and Spriger, T. A. (1989) Adv. in Immunol. 46,149-182). CD11b/CD18 has been implicated in a variety of leukocyte functions including adhesion of neutrophils to endothelial cells (Prieto, J., Beatty, P. G., Clark, E. A., and Patarroyo, M. (1988) Immunology 63, 631-637; Wallis, W. J., Hickstein, D. D., Schwartz, B. R., June, C. H., Ochs, H. D., Beatty, P. G., Klebanoff, S. J., and Harlan, J. M. (1986) Blood 67, 1007-1013; Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C. (1989) J. Clin. Invest. 83, 2008-2017) and release of hydrogen peroxide from neutrophils (Shappell, S. B., Toman, C., Anderson, D. C., Taylor, A. A., Entman, M. L. and Smith, C. W. (1990) J. Immunol. 144, 2702-2711; Von Asmuth, E. J. U., Van Der Linden, C. J., Leeuwenberg, J. F. M., and Buurman, W. A. (1991) J. Immunol. 147,3869-3875). This integrin may play a role in neutrophil and monocyte phagocytosis of opsonized (i.e. C3bi-coated) targets (Beller, D. I., Springer, T. A., and Schreiber, R. D. (1982) J.Exp. Med. 156,1000-1009). It has also been reported that CD11b/CD18 contributes to elevated natural killer activity against C3bi-coated target cells (Ramos, O. F., Kai, C., Yefenof, E., and Klein, E. (1988) J. Immunol. 140,1239-1243).
The activation of endothelial cells and neutrophils is believed to represent an important component of neutrophil-mediated inflammation. Factors that induce cell activation are termed agonists. Endothelial cell agonists, which are believed to include small regulatory proteins such as tumor necrosis factor (TNF&agr;) and interleukin-1&agr; (IL-1&agr;), are released by cells at the site of injury. Activation of endothelial cells has been reported to result in the increased surface expression of ICAM-1 (Staunton et al., 1988 Cell 52, 925) and ELAM-1 (Bevilacqua et al., 1987 Proc. Natl. Acad. Sci. (USA) 84, 9238). Raised levels of expression of these adhesive molecules on the surface of activated endothelial cells is believed to lead to the observed increased adhesivity of neutrophils for the vascular endothelium near sites of injury.
Activation of the neutrophil results in profound changes to its physiological state, including shape change, ability to phagocytose foreign bodies and release of cytotoxic substances from intracellular granules. Moreover, activation is believed to greatly increase the affinity of adhesive contacts between neutrophils and the vascular endothelium, perhaps through a conformational change in the CD11b/CD18 integrin complex on the neutrophil surface (Vedder and Harlan, 1988 J. Clin. Invest. 81, 676; Buyon

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Neutrophil inhibitors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Neutrophil inhibitors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Neutrophil inhibitors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3289796

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.