Nonaqueous electrolytes based on organosilicon ammonium...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Include electrolyte chemically specified and method

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S200000, C429S307000, C429S316000, C429S329000, C429S330000, C429S337000, C429S338000, C429S339000, C429S340000, C429S341000, C429S342000, C029S623100

Reexamination Certificate

active

06803152

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION
Not applicable.
STATEMENT AS TO FEDERALLY SPONSORED RESEARCH
Not applicable.
1. Field of the Invention
The invention generally relates organic liquid and polymer electrolytes for rechargeable batteries and electrochemical capacitors. More particularly, the invention relates to organosilicon ammonium derivatives for use as electrolyte additives.
2. Background
The demand for new and improved electronic devices such as cellular phones, notebook computers and compact camcorders has resulted in demand for energy storage devices having increasingly higher specific energy densities. A number of advanced battery technologies have recently been developed to service these devices, such as metal hydride (e.g., Ni—MH), lithium batteries with liquid electrolytes and recently, lithium batteries with polymer electrolytes.
Lithium batteries have been introduced into the market because of their high energy densities. Lithium is atomic number three on the periodic table of elements, having the lightest atomic weight and highest energy density of any solid material. As a result, lithium is a preferred material for batteries, having very high energy density. Lithium batteries are also desirable because they have a high unit cell voltage of up to approximately 4.2 V, as compared to approximately 1.5 V for both Ni—Cd and Ni—MH cells.
Lithium batteries can be either lithium ion batteries or lithium metal batteries. Lithium ion batteries intercalate lithium ions in a host material, such as graphite, to form the anode. On the other hand, lithium metal batteries use metallic lithium for the anode.
The electrolyte used in lithium batteries can be a liquid or a polymer electrolyte. Lithium batteries having liquid electrolytes have been on the market for several years. Lithium batteries having solid polymer electrolytes are comparatively new entries into the marketplace.
The electrochemical operation of a lithium battery is essentially the same whether a liquid electrolyte or polymer electrolyte is used, and is based on the anode and cathode materials used. In the case of a lithium ion battery, the battery works by the rocking chair principle, that is, charging and discharging, allowing lithium ions to “rock” back and forth between cathode and anode and for lithium ions to be involved with the intercalation-deintercalation process on the active electrode material surfaces.
During the cycling of a lithium-metal battery the following processes occur. While discharging, lithium dissolution takes place at the metal lithium anode, and results in passing lithium ions into the electrolyte. On the cathode during discharging, intercalation of lithium ions into the solid phase occurs. During the charging of a lithium-metal battery, lithium cations deintercalate from the solid phase cathode, and the deposition of metal lithium takes place on the metal lithium anode from lithium ions in the nonaqueous liquid electrolyte.
Many performance parameters of lithium batteries are associated with the electrolyte choice, and the interaction of the selected electrolyte with the cathode and anode materials used. Most devices require electrolytes to provide high conductivity and electrochemical stability over a broad range of temperatures and potentials. The electric conductivity (specific and molecular or equivalent) is one of the most important properties of electrolytes. High electrolyte ionic conductivity leads to improved battery performance. Thus, significant research has focused on developing methods for increasing electrolyte conductivity and also its chemical and electrochemical stability in electrochemical cells.
Electrolytes generally include one or more aprotic solvents, at least one salt and may also contain optional electrolyte additives. The ionic conductivity of such systems is substantially determined by interaction between the salt and the solvent and by the resulting values of the ion mobilities in liquid electrolyte systems and ion mobilities in the intermolecular spaces for plasticized polymer electrolyte systems. When selecting the composition of the electrolyte system it is generally necessary to choose solvents with a low viscosity.
One known way to increase the ionic conductivity of electrolyte solutions is through the use of mixed solvents. Using laws of ion dissociation, dielectric permeability and viscosity applied to electrolyte conductivity, it is possible to select improved compositions of solvent and solution. Thus, theoretical considerations make it possible to select solvents which provide a high constant for electrolytic dissociation in nonaqueous media.
One of the components of the mixed solvent can be regarded as a solvating agent, which supplies the system with solvation energy necessary for the appropriate ion pair formation. The second component determines a sufficiently high dielectric permeability, which is essential for the disintegration of ion pairs with the formation of free solvated ions. It is well known that in mixed solvents, alkali metal halogenides dissociate much better than in each solvent component separately.
Modifying additives can be effective in increasing the ionic conductivity and stability of nonaqueous electrolytes. Additives vary in both their chemical nature and the mechanisms of their influence. Among these additives, nitrogen containing ones, such as ternary amines and certain ammonium compounds, have been reported to produce improved electrolytes. Ternary amines have been shown to be capable of considerably increasing the solvating activity of aprotic solvents. Ternary amines in an electrolyte PEO
4
(polyethylene oxide) with acrylonitrile and LiCl (or LiBr or LiI) have been shown to increase the Li ion conductivity by up to two orders of magnitude [X. Q. Yang, H. S. Lee, J. McBreen, L. S. Choi, Y. Okamoto. The Ion Pair Effect of Aza-based Anion Receptors on Lithium Salts in Polymer Electrolytes, In Proceeding Fall Meeting, San-Antonio, Tex., Oct. 6-11, 1996, Meeting abstract, Abstr. N76]. The mentioned ternary amines were introduced into the solution in equimolar amounts in relation to the lithium salts. This increase in conductivity can be partly attributed to the formation of anion complexes (Cl

, Br

, I) with the nitrogen containing additives and the formation of complexes of Li
+
ions with ether oxygen in PEO
4
. These processes make the dissociation of lithium salts into ions more effective.
The use of ternary amines, in particular tributylamine as additives into 1,3-dioxolane and LiAsF
6
based nonaqueous electrolytes have been reported (D. Aurbach, E. Zinigrad, H. Teller, P. Dan, J. Electrochem. Soc., 147 (4) 1274-1279 (2000)). As far as the modifying activity is concerned, the authors related the influence of tributylamine to its antipolymerization activity preventing the polymerization of 1,3-dioxolane. Such an approach is effective when fluorine containing lithium salts like LiBF
4
, LiAsF
6
and LiPF
6
are used in nonaqueous electrolytes as ion-conducting additives. During operation, the lithium salts breakdown forming the inorganic acid HF. This acid in turn initiates the polymerization of the organic solvent. Thus, stabilization of the electrolyte's properties is obtained at the expense of HF acceptance by ternary amines.
Even with available electrolyte additives, conventional electrolytes for lithium secondary batteries do not provide sufficient ionic conductivity for many applications and/or are not stable enough for most applications with lithium metal secondary batteries or lithium ion secondary batteries. This is principally because previous additives have been directed at improving only one aspect of electrolyte performance, such as ionic conductivity or cycling efficiency. Moreover, conventional electrolytes cannot generally provide a lithium secondary battery having satisfactory cycling characteristics, such as charge-discharge efficiency, cycle lifetime and the like.
SUMMARY
A group of pyridinium based compounds includes an organosilicon backbone containing at le

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nonaqueous electrolytes based on organosilicon ammonium... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nonaqueous electrolytes based on organosilicon ammonium..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonaqueous electrolytes based on organosilicon ammonium... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281691

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.