Method for measurement of magnetic fields, method for...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S307000

Reexamination Certificate

active

06813513

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method for measurement of magnetic fields, a method for production of gradient coils, a gradient coil and an apparatus for magnetic resonance imaging, and more particularly to a method for measuring, after stopping application of a gradient magnetic field, the residual magnetic field; a gradient coil whose higher term of residual magnetic field is smaller; a manufacturing method for the same; and an apparatus for magnetic resonance imaging having such a gradient coil.
In a magnetic resonance imaging (MRI) apparatus, a subject of imaging is brought into the bore of a magnet system, i.e. a space in which a magnetostatic field is formed, to generate magnetic resonance signals in the subject by applying gradient magnetic fields and high frequency magnetic fields, and sectional images are generated (reconstructed) on the basis of received magnetic resonance signals.
In a magnet system which uses permanent magnets for generating a magnetostatic field, a pole piece for uniformizing the magnetic flux distribution in the magnetostatic field space is provided at the tip of each of paired permanent magnets opposite to each other, and a gradient coil for generating gradient magnetic fields is provided along the pole face of each such pole piece.
In the magnet system described above, as each gradient coil is close to a pole piece, the pole piece is magnetized by the gradient magnetic field, and the phase of the spin is affected by a magnetic field formed by its residual magnetization as if there were an eddy current having an extremely long time constant. As a result, imaging that calls for precise phase control, such as that by a fast spin echo (FSE) method is disturbed.
So far, because of the absence of an appropriate method to measure magnetic fields attributable to residual magnetization, it has been impossible to work out a way to eliminate its impact.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to realize a method for measuring, after stopping application of gradient magnetic fields, the residual magnetic fields; a method for manufacturing a gradient coil by causing the characteristics of the residual magnetic fields, revealed by the measurement, to be reflected in it; a gradient coil manufactured by that method; and an apparatus for magnetic resonance imaging having such a gradient coil.
(1) In order to solve the above-noted problem, the invention from one point of view is a method for measurement of magnetic fields characterized in that a magnetically resonant sample is arranged at a measuring point on the surface of an imaginary sphere in a measuring space; a gradient magnetic field is applied to the measuring space; RF excitation is carried out after stopping the application of the gradient magnetic field to measure FID signals generated by the sample; the magnetic field intensity is calculated on the basis of a difference in differentials of the phases of the FID signals; and a magnetic field intensity is fitted into a spheric surface function representing a magnetic field intensity distribution in the measuring space.
According to the invention from this point of view, a spheric surface function representing the characteristics of the residual magnetic field is identified by measuring the magnetic field in which residual magnetization arises by utilizing FID signals from a sample arranged at a measuring point on a spheric surface and fitting the measurement into the spheric surface function.
(2) In order to solve the above-noted problem, the invention from another point of view is a method for measurement of magnetic fields characterized in that a magnetically resonant sample is arranged at a measuring point on the surface of an imaginary sphere in a measuring space; another magnetically resonant sample is arranged at the center of the sphere; a gradient magnetic field is applied to the measuring space; RF excitation is carried out after stopping the application of the gradient magnetic field to measure FID signals generated by the samples; a magnetic field intensity at the measuring point is calculated on the basis of a difference in differentials of the phases of FID signals generated by the samples at the measuring point and at the center of the sphere; and the magnetic field intensity is fitted into a spheric surface function representing a magnetic field intensity distribution in the measuring space.
According to the invention from this point of view, FID signals from a sample arranged at the center of the sphere are measured and used as reference.
(3) In order to solve the above-noted problem, the invention from still another point of view is a method for measurement of magnetic fields characterized in that: a magnetically resonant sample is arranged at a measuring point on the surface of an imaginary sphere in a measuring space; a gradient magnetic field is intermittently applied while the gradient is successively varied from the maximum gradient in one polarity to the maximum gradient in the reverse polarity and then the gradient is successively varied from the maximum gradient in the reverse polarity to the maximum gradient in the first polarity; RF excitation is carried out during the intermittence of the gradient magnetic field to measure FID signals generated by the sample; differentials of the phases of the FID signals are calculated; a magnetic field intensity at the measuring point is calculated on the basis of the hysteresis of differences in the differentials accompanying the completion of the round of gradients; and the magnetic field intensity is fitted into a spheric surface function representing a magnetic field intensity distribution in the measuring space.
According to the invention from this point of view, the gradient magnetic field is varied reciprocatingly between the maximum gradient in one polarity and the maximum gradient in the reverse polarity. This makes possible magnetic field measurement with the hysteresis of residual magnetization kept constant.
(4) In order to solve the above-noted problem, the invention from still another point of view is a method for measurement of magnetic fields characterized in that: a magnetically resonant sample is arranged at a measuring point on the surface of an imaginary sphere in a measuring space; another magnetically resonant sample is arranged at the center of the sphere; a gradient magnetic field is intermittently applied while the gradient is successively varied from the maximum gradient in one polarity to the maximum gradient in the reverse polarity and then the gradient is successively varied from the maximum gradient in the reverse polarity to the maximum gradient in the first polarity; RF excitation is carried out during the intermittence of the gradient magnetic field to measure FID signals generated by the samples; differences in differentials of the phases of FID signals generated by the samples at the measuring point and at the center of the sphere are calculated; a magnetic field intensity at the measuring point is calculated on the basis of the hysteresis of the differences in the differentials accompanying the completion of the round of gradients; and the magnetic field intensity is fitted into a spheric surface function representing a magnetic field intensity distribution in the measuring space.
According to the invention from this point of view, FID signals from a sample arranged at the center of the sphere are measured and used as reference.
(5) In order to solve the above-noted problem, the invention from still another point of view is the method for measurement of magnetic fields, according to any of (1) through (4), characterized in that: the measurement is consecutively accomplished at a plurality of measuring points.
According to the invention from this point of view, the same sample can be used repeatedly because measurement is done consecutively at a plurality of measuring points.
(6) In order to solve the above-noted problem, the invention from still another point of view is a method for produ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for measurement of magnetic fields, method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for measurement of magnetic fields, method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measurement of magnetic fields, method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280180

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.