Process for reducing the amount of fluorinated surfactant in...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S332000, C524S544000, C524S546000, C524S458000, C525S482000

Reexamination Certificate

active

06825250

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION
This application claims priority to European Patent Application No. EP 02100574.5, filed May 22, 2002.
1. Field of the Invention
The present invention relates to a process for reducing the amount of fluorinated surfactant in aqueous fluoropolymer dispersions. In particular, the present invention relates to an economically more feasible process to reduce the amount of fluorinated surfactant.
2. Background of the Invention
Fluoropolymers, i.e. polymers having a fluorinated backbone, have been long known and have been used in a variety of applications because of several desirable properties such as heat resistance, chemical resistance, weatherability, UV-stability etc . . . The various fluoropolymers are for example described in “Modern Fluoropolymers”, edited by John Scheirs, Wiley Science 1997. The fluoropolymers may have a partially fluorinated backbone, generally at least 40% by weight fluorinated, or a fully fluorinated backbone. Particular examples of fluoropolymers include polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) (FEP polymers), perfluoroalkoxy copolymers (PFA), ethylenetetrafluoroethylene (ETFE) copolymers, terpolymers of tetrafluoroethylene hexafluoropropylene and vinylidene fluoride (THV) and polyvinylidene fluoride polymers (PVDF).
The fluoropolymers may be used to coat substrates to provide desirable properties thereto such as for example chemical resistance, weatherability, water- and oil repellency etc . . . For example aqueous dispersions of fluoropolymer may be used to coat kitchen ware, to impregnate fabric or textile e.g. glass fabric, to coat paper or polymeric substrates. Many of the applications of fluoropolyrners, in particular coating of substrates, require fluoropolymer dispersions of a very high purity. Even very small amounts of contaminants may result in defective coatings.
A frequently used method for producing aqueous dispersions of fluoropolymers involves aqueous emulsion polymerization of one or more fluorinated monomers usually followed by an up concentration step to increase the solids content of the raw dispersion obtained after the emulsion polymerization. The aqueous emulsion polymerization of fluorinated monomers generally involves the use of a fluorinated surfactant. Frequently used fluorinated surfactants include perfluorooctanoic acids and salts thereof, in particular ammonium perfluorooctanoic acid. Further fluorinated surfactants used include perfluoropolyether surfactants such as disclosed in EP 1059342, EP 712882, EP 752432, EP 816397, U.S. Pat. No. 6,025,307, U.S. Pat. No. 6,103,843 and U.S. Pat. No. 6,126,849. Still further surfactants that have been used are disclosed in U.S. Pat. No. 5,229,480, U.S. Pat. No. 5,763,552, U.S. Pat. No. 5,688,884, U.S. Pat. No. 5,700,859, U.S. Pat. No. 5,804,650, U.S. Pat. No. 5,895,799, WO 00/22002 and WO 00/71590.
Most of these fluorinated surfactants have a low molecular weight, i.e. a molecular weight of less than 1000 g/mol. Recently, such low molecular weight fluorinated compounds have raised environmental concerns. For example, perfluoroalkanoic acids are not biodegradable. Furthermore, the fluorinated surfactants are generally expensive compounds. Accordingly, measures have been taken to either completely eliminate the fluorinated low molecular weight surfactants from aqueous dispersion or at least to minimize the amount thereof in an aqueous dispersion. For example, WO 96/24622 and WO 97/17381 disclose an aqueous emulsion polymerization to produce fluoropolyiners whereby the polymerization is carried out without the addition of fluorinated surfactant.
However, most of the aqueous emulsion polymerization processes are still being carried out with the aid of a fluorinated surfactant and there thus continues to be the need to remove or at least reduce the level of fluorinated surfactant in the resulting dispersions. U.S. Pat. No. 4,369,266 discloses a method whereby part of fluorinated surfactant is removed through ultrafiltration. In the latter case, the amount of fluoropolymer solids in the dispersion is increased as well, i.e. the dispersion is upconcentrated while removing fluorinated surfactant The disadvantage of the process of U.S. Pat. No. 4,396,266 is that considerable amounts of the fluorinated surfactant leave the dispersion via the permeate of the ultrafiltration. Recovering the surfactant from such permeate is costly.
WO00/35971 further discloses a method in which the amount of fluorinated surfactant is reduced by contacting the fluoropolymer dispersion with an anion exchange resin. According to the preferred embodiment of the process disclosed in this WO publication, a non-ionic surfactant is added to the aqueous dispersion in order to stabilize the dispersion while being in contact with the anion exchange resin. The thus resulting dispersion is then allowed to flow through a column in which the anion exchange resin is fixed which results in the level of fluorinated resin being reduced to 5 ppm or less when the dispersion leaves the column. The effective removal of fluorinated surfactant in this process can probably be attributed to a chromatographic process inherently taking place.
When removing a fluorinated surfactant with an anion exchange resin, a number of disadvantages have been discovered for this column technology. In particular it has been discovered that the column technology does not provide an optimal economic solution to the removal of fluorinated surfactants at an industrial scale where thousands of tons of dispersions having usually an amount of 0.1% by weight based on solids of fluorinated surfactant may need to be treated. In particular, if the same column is to be used for dispersions of a different nature, extensive washing cycles are needed to avoid contamination of one dispersion with another when one wants to switch between dispersions. An alternative would be to use dedicated columns for the different dispersions. Either solution however has associated with it substantial costs.
Additionally, it was observed that the columns are prone to channel formation in the resin bed which results in reduced removal efficiency and eventually leads to a so-called break through of the column when the channels extend substantially throughout the column. Although reversing the flow can close the channels, this affects the availability of the equipment and thus increases cost.
Still further, the column technology is vulnerable for large particles that may be contained in some dispersions and that result from coagulation of smaller particles. Coagulation may be caused during handling of the dispersion and is very difficult to avoid completely. Also, removal of coagulate formed in the dispersion by filtration techniques is difficult and economically not feasible. Because the first layers of the column act as a filter, even small amounts of coagulate in a dispersion may block the column. Reversing flow may unclog the column but of course also affects the cost of the process.
Finally, of most concern is the fact that it has been discovered that the column technology is prone to the formation of abraded anion exchange resin particles, which may contaminate the fluoropolymer dispersion. As already mentioned above, even small amounts of contamination in the resulting fluoropolymer dispersion may make the dispersions useless in a number of typical applications of fluoropolymers, in particular coating applications.
WO 00/35971 in another embodiment also discloses a process in which the aqueous dispersion is stirred under mild conditions with the anion exchange resin. Example 8 of the WO publication suggests that 8 hours are necessary to reduce the level of fluorinated surfactant to below 5 ppm. Moreover, only a twentieth of the anion exchange resin capacity was apparently utilized in that example. The poor loading of the exchange resin in combination with the long treatment makes such a process also highly unattractive from an economical point of view.
Accordingly, it would now be desir

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for reducing the amount of fluorinated surfactant in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for reducing the amount of fluorinated surfactant in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for reducing the amount of fluorinated surfactant in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277665

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.