Low temperature, highly chemically resistant thermoplastic...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S544000, C524S545000, C524S546000, C528S031000, C528S025000

Reexamination Certificate

active

06806306

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to thermoplastic vulcanizate (TPV) compositions containing fluorine.
A two phase composition comprising a continuous phase thermoplastic material and a disperse phase elastomer, produced by dynamically vulcanizing the elastomer while the discrete phase elastomer is dispersed in the continuous phase thermoplastic material, is known. Examples of such a composition can be found in the following U.S. Pat. Nos.: 4,348,502, 4,130,535, 4,173,556, 4,207,404 and 4,409,365.
Fluorocarbon resins and elastomers containing fluorine are known to excell in heat resistance. European Patent Application 1 68020A discloses two-phase blends containing fluorine. The elastomer used is substantially a vinylidene fluoride/hexafluoropropylene elastomer, and as its vulcanization method, polyol vulcanization by a combination of bisphenol AF, an acid receiving agent and an onium salt, or peroxide vulcanization by a combination of an organic peroxide and a polyfunctional unsaturated compound, is employed.
The compounds disclosed in EP 168020 require oven vulcanization (post cure) following dynamic vulcanization. With dynamic vulcanization alone, the material's mechanical properties tend to be inadequate, particularly the permanent strain. Also, following dynamic vulcanization, the compositions also tend to form powder, rendering them extremely difficult to subsequently melt process in standard thermoplastic processing equipment. Finally, the compounds of EP 168020A are inherently susceptible to chemical attack and degradation by chemically basic moieties.
U.S. Pat. No. 5,354,811 describes alternate two-phase dynamically vulcanized compounds based on a fluorocarbon resin continuous phase and a dispersed fluorocarbon elastomer dispersed phase. The fluorine containing elastomers have vulcanizable sites selected from the group consisting of epoxy groups, carboxylic acid groups, carboxylic acid derivative groups, sulfonic acid groups and sulfonic acid derivative groups.
SUMMARY OF THE INVENTION
It is desirable to compose and produce perfluoroether based TPVs that maintain their elastomeric properties down to extremely low temperatures, much lower than standard fluoroelastomer based TPVs. In addition, it is desirable to compose and produce perfluoroether based TPVs that melt process well and give good physical and mechanical properties without subjection to a post-cure processing cycle.
This invention provides a two phase composition comprising a perfluoroether and fluorinated thermoplastic, which is useful as a thermoplastic vulcanizate, that has excellent mechanical properties, heat resistance, fluids resistance, including fluids containing basic or alkaline moieties, and is easily melt processible. Moreover, the this invention includes a material that has elastomeric properties even at extremely low temperatures. Finally, a process for its production is disclosed.
This invention also includes a two-phase composition that can be obtained by using a fluoroelastomer with a perfluoroether polymer backbone that is dynamically vulcanized with an addition-curing silicone crosslinker.
This invention also includes a continuous thermoplastic fluorocarbon resin phase and a dispersed amorphous vulcanized perfluoroether containing elastomer phase, which is useful as a melt formable material having rubber elasticity.
Furthermore, this invention relates to a process for producing a fluorine containing thermoplastic vulcanizate composition, which comprises melt blending the above mentioned thermoplastic fluorocarbon resin and the non-vulcanized amorphous perfluoroether containing elastomer, followed by dynamically vulcanizing this blend to form elastomer particles dispersed in the thermoplastic fluorocarbon resin.
The compositions of this invention have the highly desirable property of low compression set. When articles made of these compositions are compressed for long periods of time, even at high temperatures, they have a strong tendency to return to their original size and shape. Also, the composition of this invention has excellent low temperature properties, meaning that it remains rubbery or elastomeric even at extremely low temperatures.
Another advantage is that articles made from the composition of this invention are highly fluid resistant, even to fluids containing chemically basic or alkaline components. Articles molded from the composition of the present invention can find use as seals and gaskets in applications where high temperatures and harsh chemical environments are common, for example in certain types of automotive or aerospace applications.
The present invention includes fluorine containing thermoplastic vulcanizate compositions comprising a continuous phase of at least one melt formable thermoplastic fluorocarbon resin and a fluoroelastomer with a perfluoroether polymer backbone that is dynamically vulcanized with an addition-curing silicone crosslinker.
Additionally, the present invention provides for the addition of fluoroelastomer based regrind, including and especially perfluoroether elastomer based regrind, to the perfluoroether elastomer based TPV to function as standard compound filler or to supplement the elastomeric portion of the TPV, providing additional elastomeric properties. The fluoroelastomer based regrind is chemically crosslinked fluoroelastomer elastomer compounds which are ground, for example by mechanical means, to particle sizes of less than 1000 micrometers, but preferably to less than 500 micrometers and most preferably to less than 100 micrometers. The fluoroelastomer based regrind, including perfluoroether elastomer based regrind, can exist in the perfluoroether elastomer based TPV at levels of up to 65 weight percent.
Further, the present invention provides a process for producing a fluorine containing thermoplastic vulcanizate composition, which comprises a step of melt blending at least one melt formable thermoplastic fluorocarbon resin and at least one fluorine containing elastomer with a perfluoroether polymer backbone and chemically crosslinking the elastomer, for example with an addition-curing silicone crosslinker, while exerting a mixing shear force at a temperature higher than the melting point of the thermoplastic fluorocarbon resins.
DETAILED DESCRIPTION OF THE INVENTION
A selected thermoplastic fluorocarbon resin for the present invention is required to have thermoplasticity, i.e., it is required to be melt-formable. Namely, it must be a resin whereby the melt flow or the volume flow rate described in ASTM D-1238 or ASTM-2116 can be measured at a temperature higher than the melting point. It is preferably a thermoplastic fluorocarbon resin that can be melt-formed at a temperature at which there is no problem of deterioration of the fluorine containing elastomer. Among usual thermoplastic fluorocarbon resins, all fluorocarbon resins except for polytetrafluoroethylene resins that cannot be melt formed, may be employed.
The thermoplastic fluorocarbon resin useful for the present invention is a thermoplastic fluorocarbon resin having a fluorine content of at least 35% by weight, which can be obtained by polymerizing an ethylenically unsaturated compound containing a completely or partially fluorinated fluoro-olefin, preferably at least one fluoroolefin selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, trifluoroethylene chloride and a perfluoroalkylvinyl ether (wherein the alkyl group has from 1 to 8 carbon atoms).
The ethylenically unsaturated compound may, for example, be a non-fluorinated olefin such as ethylene of propylene, an alkylvinyl ether or a perfluoroalkyl ethylene, in addition to the above olefins.
Preferred among such polymers is a tetrafluoroethylene/hexafluoropropylene/vinylidene fluoride terpolymer, a tetrafluoroethylene/ethylene copolymer, a tetrafluoroethylene/hexafluoropropylene copolymer, a tetrafluoroethylene/perfluoropropylvinyl ether copolymer, a trifluoroethylene chloride/ethylene copolymer or a vi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low temperature, highly chemically resistant thermoplastic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low temperature, highly chemically resistant thermoplastic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low temperature, highly chemically resistant thermoplastic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3274629

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.