Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
2000-10-27
2004-12-28
Eyler, Yvonne (Department: 1642)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C530S300000, C530S350000, C536S023100, C536S024310, C536S024330, C424S185100
Reexamination Certificate
active
06835822
ABSTRACT:
FIELD OF THE INVENTION
The invention described herein relates to methods and compositions for the diagnosis and therapy of cancer, including prostate cancer, utilizing isolated polynucleotides, polypeptides, antibodies, and related molecules that correspond to or are reactive with human SGP28/CRISP-3.
BACKGROUND OF THE INVENTION
Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, cancer causes the death of well over a half-million people annually, with some 1.4 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.
Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Many cancer patients experience a recurrence.
Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common male cancer and is the second leading cause of cancer death in men. In the United States alone, well over 40,000 men die annually of this disease—second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.
On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the management of this disease. Although the serum PSA assay has been a very useful tool, its specificity and general utility is widely regarded as lacking in several important respects.
Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic disease progression, including the transition from androgen dependence to androgen independence and the development of metastatic lesions (Klein et al., 1997, Nat. Med. 3:402). More recently identified prostate cancer markers include PCTA-1 (Su et al., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate stem cell antigen (PSCA) (Reiter et al., 1998, Proc. Natl. Acad. Sci. USA 95: 1735), and STEAP (Hubert et al., 1999, Proc. Natl. Acad. Sci. USA 96:14523).
While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy.
SUMMARY OF THE INVENTION
The present invention relates to methods and compositions for the diagnosis and therapy of prostate cancer. The methods of the invention utilize isolated polynucleotides corresponding to human SGP28, proteins encoded by the SGP28 gene and fragments thereof, and antibodies capable of specifically recognizing and binding to SGP28 proteins. The methods of the invention are based, in part, on the molecular cloning of a gene that is identical to SGP28 and that is highly overexpressed in human prostate cancers. The invention is further based on the discovery that, as determined by immunohistochemistry, very high levels of SGP28 protein are expressed and secreted into the lumen of cancerous prostate glands as well as in PIN, a non-invasive precancerous prostate lesion, and in bone and lymph node metastases. The expression profile of SGP28 disclosed herein indicates that SGP28 provides a useful diagnostic marker and/or therapeutic target for prostate cancer. Moreover, the expression of SGP28 in PIN suggests that it may be a marker for early diagnosis of prostate cancer, a much needed improvement over what is presently available using PSA. The expression pattern of SGP28 in individual clinical specimens suggests that SGP28 can be used to identify individual patients who will be more responsive to one treatment modality versus another. In addition, SGP28 may serve as a surrogate marker for monitoring the efficacy of a prostate cancer therapeutic regimen. SGP28 molecules provide a particularly attractive marker for use in in vivo imaging methods due to its expression in lymph node and bone metastases.
SGP28 mRNA expression is restricted to the prostate and ovary, and is markedly up-regulated in prostate tumors. Expression of SGP28 in matched normal prostate/tumor samples from advanced prostate cancer patients, using both mRNA and protein detection methods, shows a high degree of up-regulated expression in the tumor tissue, suggesting that SGP28 is a useful marker for prostate cancer detection.
SGP28 is an extracellular soluble protein that has a predicted molecular weight of 29 kDa and a pI of 8.08. SGP28 has a signal peptide that is cleaved between amino acid residues 32 and 33, and includes two extracellular protein SCP motifs (prosite domain PDOC00772), one at amino acids 150-160 and another at amino acids 170-182, both of SEQ ID NO: 3. The protein has strong homology to defensin proteins, particularly to beta-defensins, which are secreted products produced mainly by epithelial cells (O-Neil et al., 1999, J. Immunol. 163:6718-24; Schroder et al., 1999, Int. J. Biochem. Cell Biol., 31:645-51). As a defensin, the SGP28 protein may have the ability to induce tumor cell death and/or may serve as a chemoattractant. SGP28 may also have a role in cell binding and/or in inducing cell growth.
A number of potential approaches to the treatment of prostate cancer and other cancers expressing SGP28 are described herein. The extracellular and soluble nature of this protein presents a number of therapeutic approaches using molecules that target SGP28 and its function, as well as molecules that target other proteins, factors and ligands that interact with SGP28. These therapeutic approaches include antibody therapy with anti-SGP28 antibodies, small molecule therapies, and vaccine therapies. In addition, given its up-regulated expression in prostate cancer, SGP28 is useful as a diagnostic, staging and/or prognostic marker for prostate cancer and, similarly, may be a marker for other cancers expressing this protein.
The invention provides polynucleotides corresponding or complementary to all or part of the SGP28 gene as described herein, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding SGP28 proteins and fragments thereof, DNA, RNA, DNA/RNA hybrid, and related molecules, polynucleotides or oligonucleotides complementary to the SGP28 gene or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides which hybridize to the SGP28 gene, mRNAs, or to SGP28-encoding polynucleotides. Also provided are means for isolating cDNAs and the genes encoding SGP28. Recombinant DNA molecules containing SGP28 polynucleotides, cells transformed or transduced with such molecules, and host vector systems for the expression of SGP28 gene products are also provided.
The in
Afar Daniel E. H.
Faris Mary
Hubert Rene S.
Jakobovits Aya
Mitchell Steve Chappell
Agensys, Inc.
Eyler Yvonne
Morrison & Foerster / LLP
Rawlings Stephen L.
LandOfFree
Diagnosis and therapy of cancer using SGP28-related molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Diagnosis and therapy of cancer using SGP28-related molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnosis and therapy of cancer using SGP28-related molecules will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3274512