Voice sound transmitting apparatus and system including...

Electrical audio signal processing systems and devices – Hearing aids – electrical – Programming interface circuitry

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S322000, C381S323000, C381S326000, C381S328000

Reexamination Certificate

active

06718043

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a voice sound transmitting and receiving apparatus and system. More particularly, though not exclusively, the present invention relates to a voice sound transmitting unit which is adaptable through the use of an expansion port.
2. Problems in the Art
Voice sound transmitting and receiving devices are known in the art. However, such devices are limited by the quality of voice signal they are capable of capturing and transmitting. For example, prior art microphones tend to pick up ambient noise and transmit the same. This is particularly problematic in communications applications that require a pure, unadulterated voice signal. For communication systems to more effectively utilize voice sound as a means of transmitting information, the prior art voice sound transmitting and receiving devices must be capable of producing a much purer voice sound signal. One specific communications application area that relies upon a clear voice signal is voice recognition technology.
Today, voice recognition software engines are gaining popularity. Such computer software enables the user to, among other things, enter information into a digital record or file directly through speech, obviating the need for keyboard or other input device. Voice recognition offers numerous advantages when employed as a means of data entry in computer information systems. As but one example, many health care professionals presently dictate patient information onto magnetic tapes that are later transcribed by a third-party for entry into a medical record system. A system that could utilize existing voice recognition technology to enter such information into digital records would save enormous amounts of time and money. The same holds true for the plethora of other applications that are not presently using voice as a means of data input and communication.
A problem that must be overcome to effectively implement an information or communication system using voice sound is the relative poor quality of voice signal obtained through prior art voice sound transmitting and receiving devices. The efficacy of voice recognition software engines depends upon the quality of the voice signal received. Bone conduction sensors deliver a fairly pure signal. Air conduction sensors, on the other hand, will receive a much stronger signal. Depending upon which sensor is used, different processors may be required. Further, as sensor technology continues to improve, processing technology will need to adapt. Also, as voice recognition software is becoming widely used in various applications, it is becoming more and more desirable to provide for an adaptable voice sound transmitting unit which can be easily reprogrammed to communicate with many applications. It is therefore easily seen that it is desirable to have a voice sound transmitting unit which is capable of adaptability.
There are also problems in the art concerning the comfort and aesthetic appeal of the voice sound transmitting and receiving devices. For example, prior voice sound transmitting devices, such as those disclosed in U.S. Pat. Nos. 5,295,193 and 4,150,262 to Ono are designed with ear pieces that totally obstruct the external auditory canal. Not only are such devices uncomfortable for the user to wear, but they also block air vibrations from entering the auditory canal. In the health care example cited previously, such a device would preclude the user from using a stethoscope while wearing the device. Further, such devices are less aesthetically pleasing to the user. There is therefore a need in the art for an improved voice sound transmitting unit that does not occlude the external auditory canal, is comfortable to wear for extended periods of time, and is aesthetically pleasing to the user.
FEATURES OF THE INVENTION
A general feature of the present invention is the provision of an improved voice sound transmitting and receiving unit which overcomes the problems found in the prior art.
A further feature of the present invention is the provision of an improved voice sound transmitting and receiving unit which is adaptable.
A further feature of the present invention is the provision of an improved voice sound transmitting and receiving unit that includes an expansion port.
Another feature of the present invention is the provision of an improved voice sound transmitting and receiving unit that is capable of accepting reprogramming.
A still further feature of the present invention is the provision of an improved voice sound transmitting and receiving unit that utilizes a sensor to transmit an unadulterated voice from the user.
Another feature of the present invention is the provision of an improved voice sound transmitting and receiving unit that is capable for use in wireless communications applications.
A further feature of the present invention is the provision of an improved voice sound transmitting and receiving unit that is comfortable to wear and does not occlude or obstruct the external auditory canal of the user.
A further feature of the present invention is the provision of a voice sound transmitting and receiving unit that permits hands-free communication over a wired or wireless communications linkage.
A further feature of the present invention is the provision of a voice sound transmitting and receiving unit that is aesthetically pleasing to the user.
These, as well as other features and advantages of the present invention, will become apparent from the following specification and claims.
SUMMARY OF THE INVENTION
The voice sound transmitting unit of the present invention includes an earpiece that is adapted for insertion into the external auditory canal of the user, the earpiece having a sensor adapted to convert vibrations of voice sound information into electrical signals. The voice sound transmitting unit also includes a speech processor and transmitter. Further, the voice sound transmitting unit includes adaptable hardware capable of either replacement or reprogramming.
In a preferred form, the sensor of the present invention includes a bone conduction sensor adapted to convert bone vibrations of voice sound information into electrical signals and an air conduction sensor residing within the auditory canal of the user and converting air vibrations of voice sound information and electrical signals. It is to be understood that either the bone conduction sensor or the air conduction sensor may be used individually, however, it is felt the use of both sensors provides the purest voice sound signal. The speech processor samples the output from the bone conduction sensor and the air conduction sensor. In comparing the sampled output, the speech processor is able to filter noise and select a pure voice sound signal for transmission.
Prior to transmission, it may be desirable to further process, modify, reformat, or otherwise alter the voice sound signal from the speech processor. Accordingly, an expansion port is operatively connected to the speech processor and the transmitter. The expansion port is capable of receiving an expansion module. The expansion module is preferably removable. The expansion port may consist of a socket, such as a pin socket, chip socket or zero insertion force socket. The expansion module may include a digital signal processing (DSP) chip, a micro controller, a field programmable gate array (FPGA), a programmable logic device (PLD), a random access or random operating memory (RAM or ROM) chip, a subscriber identity module (SIM) card, such as the 16K SIM card manufactured by Schlumberg Electronic Transactions containing 16 k of reprogrammable memory, an integrated circuit or any combination thereof or a battery for additional power supply. These various types of modules may be connected either through a socket, such as those previously mentioned, or through a carrier board edge connect.
The transmission of the voice sound signal may be through a wireless linkage. In addition, the bone conduction sensor and the air conduction sensor are preferably design

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Voice sound transmitting apparatus and system including... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Voice sound transmitting apparatus and system including..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voice sound transmitting apparatus and system including... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272001

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.