Aeronautics and astronautics – Aircraft structure
Reexamination Certificate
2002-08-30
2004-08-17
Swiatek, Robert P. (Department: 3643)
Aeronautics and astronautics
Aircraft structure
C244S123800, C156S182000, C029S897200
Reexamination Certificate
active
06776371
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Filed of this Invention
The present invention relates to a method of manufacturing a composite material wing and a composite material wing and, more particularly, a method of manufacturing a composite material wing for fastening a lower skin portion structure and an upper skin portion structure via mechanical fastening device and a composite material wing that can be manufactured by this manufacturing method. The description of Japanese Patent Application No. 2001-165850 filed on Sep. 3, 2001 including the specification, drawings and abstract is incorporated by reference in its entirely.
2. Description of Related Art
In recent years, in many cases a wing box structure of the main wing of the aircraft is manufactured by employing not only the metallic material but also composite material made of the lightweight/high strength fiber reinforced plastic (referred simply to as the “composite material” hereinafter) For example, there is the method of manufacturing the wing box structure of the main wing by fabricating separately upper/lower skins, front/rear spars, the stiffening members such as the stringers, etc., which constitute the wing box structure, and the coupling members such as the shear tie, etc. by the composite material, and then fastening or adhering such members by virtue of the mechanical fastening device such as bolts, nuts, pins, rivets, etc. (referred to as the “fasteners” hereinafter) or the adhesive.
Also, there is the method of manufacturing the wing box structure of the main wing by integrally fabricating the front portion of the wing box structure, which is constructed by the front spar, the skin, and the stiffening members (referred to as the “front spar structure” hereinafter), and the rear portion of the wing box structure, which is constructed by the rear spar, the skin, and the stiffening members (referred to as the “rear spar structure” hereinafter), respectively by virtue of the resin-impregnating curing method such as the RTM (Resin Transfer Molding) method or the RFI (Resin Film Infusion) method, and then fastening these parts by means of the fasteners.
However, according to the method of manufacturing the wing box structure of the main wing by fabricating separately respective parts such as the skins, the front and rear spars, the stiffening members, the coupling members, etc. by the composite material and then fastening these parts by means of the fasteners, the curing/molding process often becomes different for different parts. For this reason, it takes much time to fabricate/prepare a variety of parts by the limited equipment so that the production cycle is prolonged.
Also, according to the method of fabricating separately the above parts by the composite material and then fastening these parts by means of the fasteners, the clearances are often generated in the fastened portions between respective parts (e.g., the fastened portion between the spar and the skin, the fastened portion between the skin and the stiffening members, etc.). Since the wing box structure of the main wing is also used as the fuel tank, the sealing process must be applied to fill such clearances, or shapes of neighboring portions of the fastened portions between respective parts must be repaired. Therefore, it takes much time and labor to execute the fine adjustment or the alignment prior to the fastening operation and as a result the cost of production is increased.
While, according to the method of manufacturing the wing box structure of the main wing by fabricating separately the parts by the composite material respectively and then adhering these parts by means of the adhesive, like the above fastening method by using the fasteners, it takes much time to fabricate/prepare a variety of parts by the limited equipments and thus the production cycle is prolonged. Also, according to the method of adhering respective parts by means of the adhesive, the clearances are also generated in the adhered portion between respective parts. Since such clearances must be filled with the adhesive, it takes much time and labor as a result the cost of production is increased.
Also, according to the method of manufacturing the wing box structure of the main wing by fabricating integrally the front spar structure and the rear spar structure by employing the resin-impregnating curing method respectively and then fastening these structures by means of the fasteners, the front spar structure and the rear spar structure have large and complicated cavities therein and therefore special split core jigs are needed to mold such cavities. Thus, the cost of fabricating the special core jigs is increased. Also, the mold-releasing process must be applied to the special split core jigs prior to the manufacture of the front spar structure and the rear spar structure, and also the special split core jigs must be separated and cleaned after the manufacture. As a result, the cost of production is increased.
SUMMARY OF THE INVENTION
It is a subject of the present invention to provide a method of manufacturing a composite material wing capable of reducing the labor and the assembling man-hour required for the manufacture to thus shorten the production cycle and reduce the production cost considerably, and a composite material wing that can be manufactured by this manufacturing method.
In order to achieve the above subject, as shown in
FIG. 1
to
FIG. 5
, for example, the invention set forth in a first aspect of the present invention provides A method of manufacturing a composite material wing comprising: a lower skin portion structure manufacturing step of manufacturing a lower skin portion structure that contains a lower skin, a front spar, a rear spar, a lower stringer and a lower rib chord for stiffening the lower skin; an upper skin portion structure manufacturing step of manufacturing an upper skin portion structure that contains an upper skin, an upper stringer and an upper rib chord for stiffening the upper skin; and an upper and lower skin portion structure fastening step of fastening the lower skin portion structure and the upper skin portion structure; wherein the lower skin portion structure manufacturing step includes, a front spar molding step of molding a front spar, which has at least one front rib post that projects toward a wing rear side at predetermined position, in a state that a thermosetting resin is primarily cured, a rear spar molding step of molding a rear spar, which has at least one rear rib post that projects toward a wing front side at position opposing to the predetermined position, in the state that the thermosetting resin is primarily cured, a lower stringer molding step of molding the lower stringer for stiffening the lower skin in the state that the thermosetting resin is primarily cured, a lower rib chord prepreg laminating step of laminating a lower rib chord prepreg that are provided vertically along an inner shape of the lower skin in a chord direction at wing positions at which the rib post is positioned, a lower skin prepreg laminating step of laminating an lower skin prepreg on a lower molding jig that has an under surface shape of the wing, an arranging step of arranging the front spar, the rear spar, the lower stringer, and the lower rib chord prepreg on the lower skin prepreg via an adhesive respectively, a covering step of covering the lower skin prepreg, the front spar, the rear spar, the lower stringer, and the lower rib chord prepreg with a covering device, and a curing and molding step of exhausting, pressurizing, and heating portions that are covered with the covering device, the upper skin portion structure manufacturing step includes, an upper stringer molding step of molding the upper stringer for stiffening the upper skin in the state that the thermosetting resin is primarily cured, an upper rib chord prepreg laminating step of laminating upper rib chord prepreg that is provided vertically along an inner shape of the upper skin in the chord direction at wing position at which the rib post is positioned, an upper skin prepreg
Harada Atsushi
Tanaka Shigeki
Darby & Darby
Fuji Jukogyo Kabushiki Kaisha
Swiatek Robert P.
LandOfFree
Method of manufacturing a composite material wing and a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing a composite material wing and a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a composite material wing and a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3268844