Negative pressure type head slider and disk drive employing...

Dynamic magnetic information storage or retrieval – Fluid bearing head support – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S235800, C360S236000, C360S236100, C360S236300

Reexamination Certificate

active

06683755

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a negative pressure type magnetic head slider, and more particularly to a negative pressure type magnetic head slider for a load/unload type magnetic disk drive.
2. Description of the Related Art
In a recent magnetic disk drive, the flying height of a head slider from the surface of a magnetic disk is reduced more and more to increase a recording density. Further, a large acceleration is applied in an access direction to obtain a high access speed. It is accordingly desired to provide a head slider excellent in flying stability. Further, in association with size reduction of the disk drive and simplification of a mechanism in the disk drive, a rotary positioner is widely used. It is accordingly desired to provide a head slider in which variations in the flying height due to changes in yaw angle are suppressed.
To reduce the flying height of the head slider, the surface roughness of the surface of the magnetic disk must be reduced. In a contact start and stop (CSS) type magnetic disk drive heretofore widely used, a flying surface of a magnetic head slider comes into contact with a magnetic disk upon stoppage of rotation of the magnetic disk, and flies above the surface of the magnetic disk during rotation of the magnetic disk by the action of an air flow produced in concert with the rotation of the magnetic disk.
However, if the surface roughness of the magnetic disk in the CSS type magnetic disk drive is reduced, the contact area between the flying surface (air bearing surface) of the magnetic head slider and the surface of the magnetic disk upon stoppage of rotation of the magnetic disk becomes large. Accordingly, there is a possibility of stiction between the magnetic head slider and the magnetic disk at starting rotation of the magnetic disk. As measures against this stiction problem, it has been proposed to apply texture forming by laser to a CSS zone of the magnetic disk or provide a plurality of pads (projections) on the flying surface of the head slider in the CSS type magnetic disk drive.
A portable personal computer such as a notebook personal computer is often carried, and it is therefore required to have high shock resistance. Accordingly, such a personal computer generally employs a load/unload type magnetic disk drive designed so that a head slider is unloaded from the surface of a magnetic disk when the computer is powered off or put into a sleep mode and that the head slider is loaded to the surface of the magnetic disk when the computer is operated. That is, when the computer is powered off or put into a sleep mode, a horn portion formed at the front end of a suspension is seated on a ramp (inclined portion) of a ramp member provided near the outer circumference of the magnetic disk to retract the head slider flying a microscopic height above the disk surface from the magnetic disk. Accordingly, even when the computer receives shock, it is possible to avoid the possibility that the head slider may collide with the magnetic disk to damage the magnetic disk.
Such a magnetic disk drive having a load/unload mechanism is required to have a highly reliable magnetic head slider that is prevented from coming into contact or collision with a magnetic disk not only while the head slider is flying above the disk, but also when the head slider is loaded to the disk. A negative pressure type magnetic head slider is widely used in recent magnetic disk drives, so as to reduce the flying height of the magnetic head slider from the magnetic disk. As a negative pressure type magnetic head slider excellent in flying stability, there has been proposed a head slider in which a yaw angle dependence of flying height is reduced by increasing the widths of two rails from an air inlet end toward an air outlet end.
Further, variations in the flying height due to changes in yaw angle can be suppressed by reducing the width of a rail near the air inlet end. In these head sliders, a negative pressure (attraction force) is generated by changing only the width of each rail, thereby allowing simplification of a manufacturing process. Further, Japanese Patent Laid-open No. 2000-173217 includes a negative pressure type head slider which can further reduce the flying height, suppress variations in the flying height, and increase the rigidity.
In a recent magnetic disk drive, there is a tendency to reduce a magnetic disk spacing, in order to increase a storage capacity. To this end, the surface roughness of each magnetic disk is reduced, so that in the CSS type the stiction by the contact of the magnetic disk and the magnetic head slider in the rest condition becomes remarkable. To avoid this stiction problem, a load/unload type magnetic disk drive tends to be used not only in a portable personal computer such as a notebook personal computer, but also in a desktop personal computer.
A conventional negative pressure type magnetic head slider is mounted on a suspension so that the flying surface of the head slider becomes parallel to the magnetic disk at the instant when the head slider is loaded from the ramp member to the magnetic disk. Accordingly, there is a possibility that the head slider may come into contact with the disk because of a negative pressure generated on the head slider at the instant of loading.
Particularly in the case that a groove for generating a negative pressure is formed on the flying surface of the head slider so as to extend from a position upstream of the longitudinal center of the head slider to an air outlet end of the head slider, the head slider is inclined so that an air inlet end of the head slider is drawn to the magnetic disk by the negative pressure at the instant of loading, causing the contact of the air inlet end with the magnetic disk. To prevent this problem, there has been proposed a magnetic head slider mounted on a gimbal bent from a suspension so that the disk opposing surface of the head slider is inclined with respect to the disk surface at a given pitch angle in such a direction of raising the air inlet end from the disk surface. This pitch angle is set in the range of 1°±1°, for example.
In the case that the angle of incidence of the magnetic head slider mounted on the gimbal falls outside the above range, a negative pressure is generated on the magnetic head slider upon loading and the air inlet end of the head slider is rapidly lowered to cause a possibility of the contact of the air inlet end and the disk. To avoid this problem, there has been proposed a head slider in which a step surface formed on the disk opposing surface at a portion near the air inlet end is cut to form a groove for generating a positive pressure near the air inlet end in the case of loading the head slider at a negative pitch angle.
However, when the step surface is cut, the flying attitude of the head slider largely changes. Particularly, a peripheral speed dependence of pitch angle becomes large. This is due to the fact that the pressure at the air inlet end becomes unsaturated at low peripheral speeds because of cutting of the step surface. Accordingly, a reduction in negative pressure and rigidity occurs. Further, there occurs a reduction in performance such that a flying loss (a difference in level between a lowest flying point of the slider and a flying point of the head element) becomes large because of an increase in pitch angle depending on a peripheral speed.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a negative pressure type magnetic head slider which can avoid the collision with a magnetic disk upon loading and can suppress the peripheral speed dependence of pitch angle.
In accordance with an aspect of the present invention, there is provided a head slider having a disk opposing surface, an air inlet end, and an air outlet end, the head slider comprising a front rail formed on the disk opposing surface in the vicinity of the air inlet end, the front rail having a first air bearing surface and a first step surface l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Negative pressure type head slider and disk drive employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Negative pressure type head slider and disk drive employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Negative pressure type head slider and disk drive employing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263876

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.