Methods for producing members of specific binding pairs

Chemistry: molecular biology and microbiology – Vector – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S005000, C435S069100, C435S069700, C435S069800, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C530S387100, C530S387300, C536S023100, C536S023400, C536S023530

Reexamination Certificate

active

06806079

ABSTRACT:

The present invention relates to methods for producing members of specific binding pairs. The present invention also relates to the biological binding molecules produced by these methods.
Owing to their high specificity for a given antigen, the advent of monoclonal antibodies (Kohler, G. and Milstein C; 1975 Nature 256: 495) represented a significant technical break-through with important consequences both scientifically and commercially.
Monoclonal antibodies are traditionally made by establishing an immortal mammalian cell line which is derived from a single immunoglobulin producing cell secreting one form of a biologically functional antibody molecule with a particular specificity. Because the antibody-secreting mammalian cell line is immortal, the characteristics of the antibody are reproducible from batch to batch. The key properties of monoclonal antibodies are their specificity for a particular antigen and the reproducibility with which they can be manufactured.
Structurally, the simplest antibody (IgG) comprises four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulphide bonds (see FIG.
1
). The light chains exist in two distinct forms called kappa (K) and lambda (&lgr;). Each chain has a constant region (C) and a variable region (V). Each chain is organized into a series of domains. The light chains have two domains, corresponding to the C region and the other to the V region. The heavy chains have four domains, one corresponding to the V region and three domains (1,2 and 3) in the C region. The antibody has two arms (each arm being a Fab region), each of which has a VL and a VH region associated with each other. It is this pair of V regions (VL and VH) that differ from one antibody to another (owing to amino acid sequence variations), and which together are responsible for recognizing the antigen and providing an antigen binding site (ABS). In even more detail, each V region is made up from three complementarity determining regions (CDR) separated by four framework regions (FR). The CDR's are the most variable part of the variable regions, and they perform the critical antigen binding function. The CDR regions are derived from many potential germ line sequences via a complex process involving recombination, mutation and selection.
It has been shown that the function of binding antigens can be performed by fragments of a whole antibody. Example binding fragments are (i) the Fab fragment consisting of the VL, VH, CL and CH1 domains; (ii) the Fd fragment consisting of the VH and CH1 domains; (iii) the Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (iv) the dAb fragment (Ward, E. S. et al., Nature 341, 544-546 (1989) which consists of a VH domain; (v) isolated CDR regions; and (vi) F(ab′)
2
fragments, a bivalent fragment comprising two Fab fragments linked by a disulphide bridge at the hinge region.
Although the two domains of the Fv fragment are coded for by separate genes, it has proved possible to make a synthetic linker that enables them to be made as a single protein chain (known as single chain Fv (scFv); Bird, R. E. et al., Science 242, 423-426 (1988) Huston, J. S. et al., Proc. Natl. Acad. Sci., USA 85, 5879-5883 (1988)) by recombinant methods. These scFv fragments were assembled from genes from monoclonals that had been previously isolated. In this application, the applicants describe a process to assemble scFv fragments from VH and VL domains that are not part of an antibody that has been previously isolated.
Whilst monoclonal antibodies, their fragments and derivatives have been enormously advantageous, there are nevertheless a number of limitations associated with them.
Firstly, the therapeutic applications of monoclonal antibodies produced by human immortal cell lines holds great promise for the treatment of a wide range of diseases (Clinical Applications of Monoclonal Antibodies. Edited by E. S. Lennox. British Medical Bulletin 1984. Publishers Churchill Livingstone). Unfortunately, immortal antibody-producing human cell lines are very difficult to establish and they give low yields of antibody (approximately 1 &mgr;g/ml). In contrast, equivalent rodent cell lines yield high amounts of antibody (approximately 100 &mgr;g/ml). However, the repeated administration of these foreign rodent proteins to humans can lead to harmful hypersensitivity reactions. In the main therefore, these rodent-derived monoclonal antibodies have limited therapeutic use.
Secondly, a key aspect in the isolation of monoclonal antibodies is how many different clones of antibody producing cells with different specificities, can be practically established and sampled compared to how many theoretically need to be sampled in order to isolate a cell producing antibody with the desired specificity characteristics (Milstein, C., Royal Soc. Croonian Lecture, Proc. R. Soc. London B. 239; 1-16, (1990)). For example, the number of different specificities expressed at any one time by lymphocytes of the murine immune system is thought to be approximately 10
7
and this is only a small proportion of the potential repertoire of specificities. However, during the isolation of a typical antibody producing cell with a desired specificity, the investigator is only able to sample 10
3
to 10
4
individual specificities. The problem is worse in the human, where one has approximately 10
12
lymphocyte specificities, with the limitation on sampling of 10
3
or 10
4
remaining.
This problem has been alleviated to some extent in laboratory animals by the us of immunisation regimes. Thus, where one wants to produce monoclonal antibodies having a specificity against a particular epitope, an animal is immunised with an immunogen expressing that epitope. The animal will then mount an immune response against the immunogen and there will be a proliferation of lymphocytes which have specificity against the epitope. Owing to this proliferation of lymphocytes with the desired specificity, it becomes easier to detect them in the sampling procedure. However, this approach is not successful in all cases, as a suitable immunogen may not be available. Furthermore, where one wants to produce human monoclonal antibodies (eg for therapeutic administration as previously discussed), such an approach is not practically, or ethically, feasible.
In the last few years, these problems have in part, been addressed by the application of recombinant DNA methods to the isolation and production of e.g. antibodies and fragments of antibodies with antigen binding ability, in bacteria such as
E.coli.
This simple substitution of immortalised cells with bacterial cells as the ‘factory’, considerably simplifies procedures for preparing large amounts of binding molecules. Furthermore, a recombinant production system allows scope for producing tailor-made antibodies and fragments thereof. For example, it is possible to produce chimaeric molecules with new combinations of binding and effector functions, humanised antibodies (e.g. murine variable regions combined with human constant domains or murine-antibody CDRs grafted onto a human FR) and novel antigen-binding molecules. Furthermore, the use of polymerase chain reaction (PCR) amplification (Saiki, R. K., et al., Science 239, 487-491 (1988)) to isolate antibody producing sequences from cells (e.g. hybridomas and B cells) has great potential for speeding up the timescale under which specificities can be isolated. Amplified VH and VL genes are cloned directly into vectors for expression in bacteria or mammalian cells (Orlandi, R., et al., 1989, Proc. Natl. Acad. Sci., USA 86, 3833-3837; Ward, E. S., et al., 1989 supra; Larrick, J. W., et al., 1989, Biochem. Biophys. Res. Commun. 160, 1250-1255; Sastry, L. et al., 1989, Proc. Natl. Acad. Sci., USA., 86, 5728-5732). Soluble antibody fragments secreted from bacteria are then screened for binding activities.
However, like the production system based upon immortalised cells, the recombinant production system still suffers from the selection problems previously disc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for producing members of specific binding pairs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for producing members of specific binding pairs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for producing members of specific binding pairs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3260483

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.