Method and circuit arrangement for producing an ignition...

Electric lamp and discharge devices: systems – Periodic switch in the supply circuit – Impedance or current regulator in the supply circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S291000

Reexamination Certificate

active

06720738

ABSTRACT:

1. FIELD OF THE INVENTION
The invention relates to a method for generating a starting voltage for a fluorescent lamp, in which an LC series resonant circuit is supplied during the starting procedure with an alternating voltage having a frequency in the region of a resonant frequency determined by the components involved in the series resonant circuit. The voltage across a capacitor of the LC series resonant circuit is fed to the fluorescent lamp connected in parallel to the capacitor.
The invention also relates to a circuit arrangement for generating a starting voltage for a fluorescent lamp, with an LC series resonant circuit and an alternating-voltage generator connected to the resonant circuit, where the fluorescent lamp is connected in parallel to a capacitor of the LC series resonant circuit.
2. BACKGROUND OF THE INVENTION
A method of the kind mentioned above and a circuit arrangement of the kind mentioned above are known from European Patent Application 0 889 675, for example, in which an LC series resonant circuit is supplied with a high-frequency alternating voltage. If this alternating voltage lies within the resonant frequency of the components involved in the series resonant circuit, a voltage is generated at a capacitor of the LC series resonant circuit that corresponds to the starting voltage of the fluorescent lamp connected in parallel to the capacitor. The generation of this starting voltage causes the fluorescent lamp to start, the starting procedure thereby being completed. Thereafter, only the voltage required for normal operation is applied to the fluorescent lamp.
However, component tolerances of the components involved in the series resonant circuit can lead to substantial variation of the resonant frequency of the resonant circuit. As a result, the frequency of the alternating voltage during the starting procedure (starting frequency) is no longer in the intended resonance with the series resonant circuit, meaning that there can be significant variation of the starting voltage. In this context, either the starting voltage can be too low, in which case the lamp may not start, or the starting voltage can also be too high, which could lead to destruction of the device in the event of a fault, for instance if the lamp is defective.
3. SUMMARY OF THE INVENTION
The object of the invention is thus to describe a method and a circuit arrangement for generating a starting voltage for fluorescent lamps, in which the reliability of starting is increased and the exceeding of maximum permissible starting voltages is avoided.
With regard to the method, the object is solved in that the alternating voltage is impressed on the LC series resonant circuit with a first starting frequency f
1
over a first time interval. After the first time interval, the voltage at the fluorescent lamp is measured and compared with a setpoint value. When the setpoint value is reached, generation of the starting voltage is discontinued and a voltage for normal operation of the fluorescent lamp is applied. These process steps are repeated for an n-th time interval with an n-th starting frequency, where n=1 . . . m, until the setpoint value is reached. In this context, the first starting frequency f
1
corresponds to a maximum value of the resonant frequency, as determined by the tolerance of the components involved. The m-th starting frequency f
m
corresponds to a minimum value of the resonant frequency, as determined by the tolerance of the components involved. Each n-th starting frequency f
n
is smaller than its preceding starting frequency f
n−1
.
By varying the starting frequencies of the alternating voltage applied to the LC series resonant circuit, the possible tolerance range of the resonant frequency is “worked through” until the necessary value of a starting voltage for the fluorescent lamp is reached. This avoids an insufficient starting voltage being generated due to a lack of resonance and the lamp failing to start as a result. On the other hand, measuring the starting voltage and comparing it with the setpoint value avoids an excessive starting voltage being generated, which could possibly destroy the device.
In a favourable embodiment of the invention, provision is made for each n-th starting frequency f
n
to be an amount &Dgr;f smaller than its preceding starting frequency f
n−1
. The following equation applies in this context:
Δ



f
=
(
f
l
-
f
m
)
(
m
-
1
)
.
As a result of this design of the invention, the frequency is changed in equidistant intervals, this permitting optimum adjustment.
In a further embodiment of the method according to the invention, provision is made for the measuring sensitivity when measuring the voltage applied to the fluorescent lamp to be switched between a lower measuring sensitivity during the starting procedure and a higher measuring sensitivity during normal operation.
Very large voltage amplitudes are obtained when measuring the lamp voltage during the starting procedure and in normal operation. If this lamp voltage is measured with the same measuring sensitivity, measurement of the lamp voltage in normal operation, when the lamp voltage has a far smaller amplitude compared to the starting procedure, would have very poor resolution, this being avoided by this solution according to the invention.
With regard to the device, the object is solved in that the frequency of the alternating-voltage generator can be controlled by a control unit and that a measuring circuit is connected to the control unit.
Given the possibility of varying the frequency of the alternating-voltage generator, the lamp voltage can be set as a function of the measurements obtained via the measuring circuit. This achieves a gradual change in the starting frequency, so as to obtain a starting voltage at all, even in the event of major component differences, and also to avoid a maximum permissible starting voltage being exceeded.
In an expedient embodiment of the circuit arrangement, provision is made for the control unit to contain a controller. A controller of this kind permits simple realisation of an analysis and control program for controlling the starting frequency profile.
In another embodiment of the circuit arrangement according to the invention, provision is made for the measuring circuit to contain a range extension circuit. This range extension circuit consists of a voltage divider with a first and second measuring resistor. In this context, the input voltage of the range extension circuit is applied via the first and second measuring resistors. The output voltage of the range extension circuit is applied via the second measuring resistor. In this context, at least a third measuring resistor is provided, which can be connected in parallel to the second measuring resistor by means of a switch.
Switching-on the second measuring resistor results in parallel connection of the second and third measuring resistors, the total resistance of which is smaller than that of the second measuring resistor. This means that a lower output voltage is obtained at the same input voltage. In other words, if very large amplitudes are to be measured as the input voltage, the third measuring resistor is switched on and the output voltage thus attenuated by an amount defined by the measuring resistors. If smaller amplitudes are to be measured as the input voltage, the switch is used to deactivate this parallel connection, as a result of which the output voltage is not attenuated. Consequently, the output voltage can always be of the same order of magnitude as the amplitude and thus measured with the same resolution.
In an expedient embodiment, provision is made for the switch to be designed as an additional output of the controller. A so-called “port pin” is used for this purpose, which, for example, establishes connection to earth when appropriately activated by the controller. This means that, under the control of the controller, the measuring range can be switched over as soon as the controller detects a difference between the lamp voltage duri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and circuit arrangement for producing an ignition... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and circuit arrangement for producing an ignition..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and circuit arrangement for producing an ignition... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256490

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.