Multi-layered unit including electrode and dielectric layer

Electricity: electrical systems and devices – Electrostatic capacitors – Fixed capacitor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S321100

Reexamination Certificate

active

06788522

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a multi-layered unit including an electrode and a dielectric layer and, particularly, to a multi-layered unit suitable for fabricating a thin film capacitor having a small size, large capacitance and an excellent dielectric characteristic and suitable for fabricating an inorganic EL (electro-luminescence) device capable of emitting light having high luminescence.
DESCRIPTION OF THE PRIOR ART
Recently, the operating frequency of LSIs (Large Scale Integrated circuits), typically CPUs (Central Processing Units), has become higher and higher. In the LSI having a high operating frequency, power supply noise is very likely to be generated, and once power supply noise occurs, a voltage drop occurs due to parasitic resistance and parasitic inductance of the power supply wiring, causing the LSI to operate erroneously.
In order to prevent such a voltage drop caused by power supply noise, a decoupling capacitor is generally connected between the terminals of the LSI power supply. In the case where a decoupling capacitor is connected between the terminals of the LSI power supply, the impedance of the power supply wiring decreases to effectively prevent voltage drop caused by power supply noise.
The impedance required of the power supply wiring is proportional to the operating voltage of the LSI and inversely proportional to the integration density of the LSI, the switching current of the LSI and the operating frequency of the LSI. Therefore, in current LSIs, which have high integration density, low operating voltage and high operating frequency, the impedance required of the power supply wiring is extremely low.
In order to achieve such low impedance of the power supply wiring, it is necessary to increase the capacitance of the decoupling capacitor and considerably lower the inductance of the wiring connecting the terminals of the LSI power supply and the decoupling capacitor.
As a decoupling capacitor having a large capacitance, an electrolytic capacitor or a multilayer ceramic capacitor is generally employed. However, since the size of an electrolytic capacitor or multilayer ceramic capacitor is relatively large, it is difficult to integrate it with an LSI. Therefore, the electrolytic capacitor or multilayer ceramic capacitor has to be mounted on a circuit substrate independently of the LSI and, as a result, the length of wiring for connecting the terminals of the LSI power supply and the decoupling capacitor is inevitably long. Accordingly, in the case where an electrolytic capacitor or a multilayer ceramic capacitor is employed as a decoupling capacitor, it is difficult to lower the inductance of the wiring for connecting the terminals of the LSI power supply and the decoupling capacitor.
In order to shorten the wiring for connecting the terminals of the LSI power supply and the decoupling capacitor, use of a thin film capacitor having a smaller size than that of an electrolytic capacitor or a multilayer ceramic capacitor is suitable.
Japanese Patent Application Laid Open No. 2001-15382 discloses a thin film capacitor having a small size and large capacitance which employs PZT, PLZT, (Ba, Sr) TiO
3
(BST), Ta
2
O
5
or the like as a dielectric material.
However, the thin film capacitor employing any one of the above mentioned materials is disadvantageous in that the temperature characteristic thereof is poor. For example, since the dielectric constant of BST has a temperature dependency of −1000 to −4000 ppm/° C., in the case where BST is employed as a dielectric material, the capacitance of the thin film capacitor at 8° C. varies between −6% and −24% in comparison with that at 20° C. Therefore, a thin film capacitor employing BST as a dielectric material is not suitable for use as a decoupling capacitor for a high operating frequency LSI whose ambient temperature frequently reaches 80° C. or higher owing to heat generated by electric power consumption.
Furthermore, the dielectric constant of a dielectric thin film formed of any one of the above mentioned materials decreases as the thickness thereof decreases and the capacitance thereof greatly decreases when an electric field of 100 kV/cm, for example, is applied thereto. Therefore, in the case where any one of the above mentioned materials is used as a dielectric material for a thin film capacitor, it is difficult to simultaneously make the thin film capacitor small and the capacitance thereof great.
In addition, Moreover, since the surface roughness of a dielectric thin film formed of any one of the above mentioned materials is high, its insulation performance tends to be lowered when formed thin.
It might be thought possible to overcome these problems by using a bismuth layer structured compound as a dielectric material for a thin film capacitor. The bismuth layer structured compound is discussed by Tadashi Takenaka in “Study on the particle orientation of bismuth layer structured ferroelectric ceramics and their application to piezoelectric or pyroelectric materials” Engineering Doctoral Thesis at the University of Kyoto (1984), Chapter 3, pages 23 to 36.
It is known that the bismuth layer structured compound has an anisotropic crystal structure and behaves as a ferroelectric material but that the bismuth layer structured compound exhibits only weak property as a ferroelectric material and behaves like as a paraelectric material along a certain axis of orientation.
The property of the bismuth layer structured compound as a ferroelectric material is undesirable when the bismuth layer structured compound is utilized as a dielectric material for a thin film capacitor since it causes variation in dielectric constant. Therefore, when a bismuth layer structured compound is used as a dielectric material for a thin film capacitor, it is preferable that its paraelectric property can be fully exhibited.
Therefore, a need has been felt for the development of a thin film capacitor of small size, large capacitance and excellent dielectric characteristic that has a dielectric layer in which a bismuth layer structured compound oriented in the axis of orientation along which the bismuth layer structured compound exhibits only weak property as a ferroelectric material and behaves like a paraelectric material.
On the other hand, it is necessary in order to fabricate an inorganic EL (electro-luminescence) device for emitting light having high luminescence to provide a dielectric layer having a high insulating property between an electrode and an inorganic EL device and it is therefore required to develop an inorganic EL device provided with a dielectric layer in which a bismuth layer structured compound oriented in the axis of orientation along which the bismuth layer structured compound exhibits only weak property as a ferroelectric material and behaves like a paraelectric material.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a multi-layered unit suitable for fabricating a thin film capacitor having a small size, large capacitance and an excellent dielectric characteristic and suitable for fabricating an inorganic EL (electro-luminescence) device capable of emitting light having high luminescence.
The above and other objects of the present invention can be accomplished by a multi-layered unit constituted by forming on a support substrate formed of a material on which crystals cannot be epitaxially grown, a buffer layer, which is formed of a material having an anisotropic property and enabling epitaxial growth of crystals of a conductive material thereon to form an electrode layer and is oriented in the [001] direction, the electrode layer formed by epitaxially growing crystals of a conductive material and oriented in the [001] direction, and a dielectric layer formed by epitaxially growing a dielectric material containing a bismuth layer structured compound on the electrode layer and oriented in the [001] direction in this order.
In the present invention, the [001] direction as ter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-layered unit including electrode and dielectric layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-layered unit including electrode and dielectric layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-layered unit including electrode and dielectric layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3255951

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.