Dual band coplanar microstrip interlaced array

Communications: radio wave antennas – Antennas – Microstrip

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S824000, C343S893000

Reexamination Certificate

active

06795020

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to dual band, coplanar antennas. In particular, the present invention relates to dual band coplanar antennas having interlaced arrays to minimize the surface area required by the antenna.
BACKGROUND OF THE INVENTION
Antennas are used to radiate and receive radio frequency signals. The transmission and reception of radio frequency signals is useful in a broad range of activities. For instance, radio wave communication systems are desirable where communications are transmitted over large distances. In addition, radio frequency signals can be used in connection with obtaining geographic position information.
In order to provide desired gain and directional characteristics, the dimensions and geometry of an antenna are typically such that the antenna is useful only within a relatively narrow band of frequencies. It is often desirable to provide an antenna capable of operating at more than one range of frequencies. However, such broadband antennas typically have less desirable gain characteristics than antennas that are designed solely for use at a narrow band of frequencies. Therefore, in order to provide acceptable gain at a variety of frequency bands, devices have been provided with multiple antennas. Although such an approach is capable of providing high gain at multiple frequencies, the provision of multiple antennas requires relatively large amounts of physical space.
An example of a device in which relatively high levels of gain at multiple frequencies and a small antenna area are desirable are wireless telephones capable of operating in connection with different wireless communication technologies. In particular, it may be desirable to provide a wireless telephone capable of operating in connection with different wireless systems having different frequencies, when communication using a preferred system is not available. Furthermore, in wireless telephones, a typical requirement is that the telephone provide high gain, in order to allow the physical size and power consumption requirements of the telephone components to be small.
Another example of a device in which high gain characteristics at multiple frequencies and a small antenna area are desirable are global positioning system (GPS) receivers. In particular, GPS receivers using dual frequency technologies, or using differential GPS techniques, must be capable of receiving weak signals transmitted on two different carrier signals. As in the example of wireless telephones, it is generally desirable to provide GPS receivers that are physically small, and that have relatively low power consumption requirements.
Still another example of a device in which a relatively high gain at multiple frequency bands is desirable is in connection with a communications satellite or a global positioning system satellite. In such applications, it can be advantageous to provide phased array antennas capable of providing multiple operating frequencies and of directing their beam towards a particular area of the Earth. In addition, it can be advantageous to provide such capabilities in a minimal area, to avoid the need for large and complex radiator structures.
Planar microstrip antennas have been utilized in connection with various devices. However, providing multiple frequency capabilities typically requires that the area devoted to the antenna double (i.e., two separate antennas must be provided) as compared to a single frequency antenna. Alternatively, microstrip antenna elements optimized for operation at a first frequency have been positioned in a plane overlaying a plane containing microstrip antenna elements adapted for operation at a second frequency. Although such devices are capable of providing multiple frequency capabilities, they require relatively large surfaces or volumes, and are therefore disadvantageous when used in connection with portable devices. In addition, such arrangements can be expensive to manufacture, and can have undesirable interference and gain characteristics.
The amount of space required by an antenna is particularly apparent in connection with phased array antennas. Phased array antennas typically include a number of radiator elements arrayed in a plane. The elements can be provided with differentially delayed versions of a signal, to steer the beam of the antenna. The steering, or scanning, of an antenna's beam is useful in applications in which it is desirable to point the beam of the antenna in a particular direction, such as where a radio communications link is established between two points, or where information regarding the direction of a target object is desired. The elements comprising phased array antennas usually must be spread over a relatively large area. Furthermore, in order to provide phased array antennas capable of operating at two different frequency bands, two separate arrays must be provided. Therefore, a conventional phased array antenna for operation at two different frequency bands can require twice the area of a single frequency band array antenna, and the phase centers of the separate arrays are not co-located. Alternatively, arrays can be stacked one on top of the other, however this approach results in antennas that are difficult to design such that they operate efficiently, and are expensive to manufacture. In addition, prior attempts at providing antenna arrays capable of operating at two distinct frequency bands have resulted in poor performance, including the creation of grating lobes, large amounts of coupling, large losses, and have required relatively large areas.
Therefore, there is a need for an antenna capable of operating at multiple frequencies that is relatively compact and that occupies a relatively small surface area. In addition, there is a need for such an antenna capable of providing a beam having high gain at multiple frequencies that can be scanned. Moreover, there is a need for an antenna capable of providing high gain at multiple frequencies that can be packaged within a relatively small area or volume, and that minimizes coupling and losses due to the close proximity of the antenna elements. Furthermore, it would be advantageous to provide an antenna capable of operating at multiple frequency bands and having co-located phase centers. In addition, such an antenna should be reliable and inexpensive to manufacture.
SUMMARY OF THE INVENTION
In accordance with the present invention, a dual band, coplanar, microstrip, interlaced array antenna is provided. The antenna includes a first plurality of antenna radiator elements forming a first array for operation at a first center frequency, interlaced with a second plurality of antenna radiator elements forming a second array for operation at a second center frequency. The antenna is capable of providing high gain in both the first and second center frequencies. In addition, the antenna may be designed to provide a desired scan range for each of the operating frequency bands.
In accordance with an embodiment of the present invention, the first and second pluralities of antenna radiator elements are located within a common plane. In addition, radiator elements adapted for use in connection with the first operating frequency band may be interlaced with radiator elements adapted for operation at the second operating frequency band. Accordingly, the footprint or area of the first antenna array may substantially overlap with the footprint or area of the second antenna array. Therefore, a dual band array antenna may be provided within an area about equal to the area of a single band array antenna having comparable performance at one of the operating frequencies of the dual band antenna.
In accordance with an embodiment of the present invention, a dual band, coplanar, microstrip array antenna is formed using metallic radiator elements. Radiator elements for operation at a first operating frequency band of the antenna are provided in a first size, and overlay a substrate having a first dielectric constant. Radiator elements for operation in connection with the second

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual band coplanar microstrip interlaced array does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual band coplanar microstrip interlaced array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual band coplanar microstrip interlaced array will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3254729

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.