Externally worn transceiver for use with an implantable...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S903000, C128S904000, C607S032000

Reexamination Certificate

active

06738671

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to implantable medical devices and communication therewith, and in particular, the present invention relates to a transceiver device in proximity to the implantable medical device and an external sensor that cooperates with the implantable medical device to produce a desired therapy in one or more implantable medical devices.
BACKGROUND OF THE INVENTION
Various medical devices have been developed that acquire information from one or more physiologic sensors or transducers. A typical physiologic sensor transduces a measurable parameter of the human body, such as blood pressure, electrical activity (ECG), temperature or oxygen saturation, for example, into corresponding electrical signals. In many implantable medical device applications, it is often desirable or necessary to acquire physiological data for extended periods of time and on a continuous basis. In addition to the continuous acquisition of physiological data, there are many applications in which it is often desirable to implement a patient diary of sorts by enabling the patient to input relevant information at appropriate times so that the combined continuous data acquisition and patient input provides a record that can be used to better understand other physiologic events or to create signals.
A problem well known to designers of implantable medical devices, such as pacemakers, for example, concerns the necessity of using low power components, including low power memory and processing components, within the implantable medical device. Use of low powered components is considered necessary in order to provide for extended periods of implantable medical device operation, and to reduce the need to repeatedly replace batteries, which can only be accomplished through surgical means. As a consequence, conventional implantable medical devices typically employ low voltage, low current memory and processing devices, which have limited storage capacity and access speed, and often lag behind the state-of-the-art memory and processing technology by several years. These and other limitations significantly decrease the data storage, processing power, and access capability of implantable medical devices, and often precludes the opportunity to integrate high capacity, low cost, state-of-the-art memory and processing devices in implantable medical device designs.
Various implementations of portable or user-worn electrocardiographic recording/monitoring devices are known in the art, examples of which may be found in the issued patents list in Table 1 below.
TABLE 1
U.S. Pat. No.
Inventor(s)
Issue Date
6,200,265
Walsh et al.
Mar. 13, 2001
5,833,603
Kovacs et al.
Nov. 10, 1998
5,721,783
Anderson
Feb. 24,1998
5,720,770
Nappholz et al.
Feb. 24, 1998
5,759,199
Snell et al.
Jun. 2, 1998
5,634,468
Platt et al.
Jun. 3, 1997
5,511,553
Segalowitz
Apr. 30, 1996
5,289,824
Mills et al.
Mar. 1, 1994
5,191,891
Righter
Mar. 9, 1993
5,113,869
Nappholz et al.
May 19, 1992
4,660,568
Cosman
Apr. 28, 1987
4,622,979
Katchis et al.
Nov. 18, 1986
4,494,950
Fischell
Jan. 22, 1985
Conventional portable or patient-worn electrocardiographic (ECG) monitor/recorders, such as those disclosed in one or more of the patents listed in Table 1 above, are autonomous systems that enable only limited interaction between the patient and the device, and can only be used in accordance with a single specific telemetry format. Accordingly, what is needed is a device for communicating with an implantable medical device that allows increased patient interaction with the device, seamless transmission of data to other devices, including an Internet appliance, a cellular network, and so forth, enabling use across multiple telemetry formats and between multiple implantable medical devices to store and manage information from a broad range of devices.
SUMMARY OF THE INVENTION
The present invention relates to an implantable medical device system that includes an implantable medical device for implantation within a patient that monitors physiologic conditions of the patient and/or delivers a therapy in response to physiologic conditions. A transceiver device coupled to the implantable medical device along a wireless link exchanges data with the patient, between the patient and the implantable medical device, and between a remote location and the implantable medical device. A communication device coupled to the transceiver device along a wireless link exchanges data with the transceiver device and with the implantable medical device through the transceiver device, and exchanges data between the transceiver device and the remote location. In this way, the implantable medical device system enables bi-directional data transfer between the patient, the implantable medical device, the transceiver device, the communication device, and the remote location.
According to a preferred embodiment of the present invention, a patient wearable transceiver device exchanges data with an implantable medical device for implantation within a patient. The transceiver device includes means for receiving information from the implantable medical device, means for exchanging data between the patient, the implantable medical device, the communication device, and a remote location, and means for processing the data exchanged. The means for receiving, the means for exchanging, and the means for processing enable bi-directional data transfer between the patient, the implantable medical device, the transceiver device, and the remote location.
Another aspect of the present invention includes a converter unit that converts transmission of the data between the implantable medical device, the transceiver device, and the communication device from a first telemetry format to a second telemetry format.
In yet another aspect of the present invention, an implantable medical device system includes an implantable medical device for implantation within a patient that monitors physiologic conditions of the patient, and/or delivers a therapy in response to the physiologic conditions, along with a transceiver device coupled to the implantable medical device along a wireless link that exchanges data with the patient, between the patient and the implantable medical device, and between a remote location and the implantable medical device. A communication device coupled along a wireless link to the transceiver device exchanges data with the transceiver device and with the implantable medical device through the transceiver device, and exchanges data between the transceiver device and the remote location. A converter unit converts transmission of the data between the implantable medical device, the transceiver device, and the communication device from a first telemetry format to a second telemetry format, and a direct interface couples the transceiver device to an external device to enable direct downloading of the data and configuration/setup information to the external device, and connection to user interface devices. An external reference sensor senses a parameter external to the patient, and the transceiver device receives the sensed parameter from the external reference sensor and/or receives data from the implantable medical device. A user interface enables information to be exchanged between the transceiver device and the patient, between the implantable medical device and the patient through the transceiver device, and between the patient and the remote location.
According to yet another aspect of the present invention, the user interface includes a patient physiologic parameter portion that displays the physiologic conditions of the patient, a daily activity diary portion that enables the patient to input activities to the transceiver device, and a medication reminder portion that displays medication reminders in response to a request received from the implantable medical device and in response to data processed by the implantable medical device and the transceiver device. An event storage portion stores information, including the input activities and the physiologic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Externally worn transceiver for use with an implantable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Externally worn transceiver for use with an implantable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Externally worn transceiver for use with an implantable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3254504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.