Methods for the high-resolution identification of...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S023000, C435S024000, C436S501000, C436S536000, C436S086000, C436S089000, C436S161000, C436S173000, C436S174000, C436S175000

Reexamination Certificate

active

06797482

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the identification of solvent-accessible amide hydrogens in polypeptides or proteins. The methods of the invention can be used to characterize the binding site involved in binding between a binding protein and a binding partner, and to study other changes in a polypeptide or protein which alter the rates at which hydrogen atoms exchange with solvent hydrogens, such as folding phenomena and other structural changes.
2. Background Art
Limitations of Current Methods of Characterizing Protein Binding Sites
Considerable experimental work and time are required to precisely characterize a binding site. In general, the techniques which are the easiest to use and which give the quickest answers, result in an inexact and only approximate idea of the nature of the critical structural features. Techniques in this category include the study of proteolytically generated fragments of the protein which retain binding function; recombinant DNA techniques, in which proteins are constructed with altered amino acid sequence (site directed mutagenesis); epitope scanning peptide studies (construction of a large number of small peptides representing subregions of the intact protein followed by study of the ability of the peptides to inhibit binding of the ligand to receptor); covalent crosslinking of the protein to its binding partner in the area of the binding site, followed by fragmentation of the protein and identification of crosslinked fragments; and affinity labeling of regions of the receptor which are located near the ligand binding site of the receptor, followed by characterization of such “nearest neighbor” peptides. (Reviewed in 1, 2).
These techniques work best for the determination of the structure of binding subregions which are simple in nature, as when a single short contiguous stretch of polypeptide within a protein is responsible for most of the binding activity. However, for many protein-binding partner systems of current interest, the structures responsible for binding on both receptor and ligand or antibody are created by the complex interaction of multiple non-contiguous peptide sequences. The complexities of these interactions may confound conventional analytical techniques, as binding function is often lost as soon as one of the 3-dimensional conformations of the several contributing polypeptide sequences is directly or indirectly perturbed.
The most definitive techniques for the characterization of the structure of receptor binding sites have been NMR spectroscopy and X-ray crystallography. While these techniques can ideally provide a precise characterization of the relevant structural features, they have major limitations, including inordinate amounts of time required for study, inability to study large proteins, and, for X-ray analysis, the need for protein-binding partner crystals (Ref. 3).
Applicant's technology overcomes these limitations and allows the rapid identification of each of the specific polypeptides and amino acids within a protein which constitute its protein ligand binding site or antibody binding subregion in virtually any protein-ligand system or protein antigen-antibody system, regardless of the complexity of the binding sites present or the size of the proteins involved. This technology is superior in speed and resolution to currently employed biochemical techniques.
Hydrogen (Proton) Exchange
When a protein in its native folded state is incubated in buffers containing heavy hydrogen (tritium or deuterium) labeled water, heavy hydrogen in the buffer reversibly exchanges with normal hydrogen present in the protein at acidic positions (for example, O—H, S—H, and N—H groups) with rates of exchange which are dependent on each exchangeable hydrogen's chemical environment, temperature, and most importantly, its accessibility to the tritiated water in the buffer. (Refs. 4, 5) Accessibility is determined in turn by both the surface (solvent-exposed) disposition of the hydrogen, and the degree to which it is hydrogen-bonded to other regions of the folded protein. Simply stated, acidic hydrogen present on amino acid residues which are on the outside (buffer-exposed) surface of the protein and which are hydrogen-bonded to solvent water will exchange more rapidly with heavy hydrogen in the buffer than will similar acidic hydrogen which are buried and hydrogen bonded within the folded protein.
Hydrogen exchange reactions can be greatly accelerated by both acid and base-mediated catalysis, and the rate of exchange observed at any particular pH is the sum of both acid and base mediated mechanisms. For many acidic hydrogen, a pH of 2.7 results in an overall minimum rate of exchange (Ref. 6, pg. 238, FIGS. 3
a-c
, refs. 7-11). While hydrogens in protein hydroxyl and amino groups exchange with tritium in buffer at millisecond rates, the exchange rate of one particular acidic hydrogen, the peptide amide bond hydrogen, is considerably slower, having a half life of exchange (when freely hydrogen bonded to solvent water) of approximately 0.5 seconds at 0° C., pH 7, which is greatly slowed to a half life of exchange of 70 minutes at 0° C. pH 2.7.
When peptide amide hydrogens are buried within a folded protein, or are hydrogen bonded to other parts of the protein, exchange half lives with solvent hydrogens are often considerably lengthened, at times being measured in hours to days. Hydrogen exchange at peptide amides is a fully reversible reaction, and rates of on-exchange (solvent heavy hydrogen replacing protein-bound normal hydrogen) are identical to rates of off-exchange (hydrogen replacing protein-bound heavy hydrogen) if the state of a particular peptide amide within a protein, including its chemical environment and accessibility to solvent hydrogens, remains identical during on-exchange and off-exchange conditions.
Hydrogen exchange is commonly measured by performing studies with proteins and aqueous buffers that are differentially tagged with pairs of the three isotopic forms of hydrogen (
1
H;Normal Hydrogen;
2
H;Deuterium;
3
H;Tritium). If the pair of normal hydrogen and tritium are employed, it is referred to as tritium exchange; if normal hydrogen and deuterium are employed, as deuterium exchange. Different physicochemical techniques are in general used to follow the distribution of the two isotopes in deuterium versus tritium exchange.
Tritium Exchange Techniques
Tritium exchange techniques (where the amount of the isotope is determined by radioactivity measurements) have been extensively used for the measurement of peptide amide exchange rates within an individual protein (reviewed in 4). The rates of exchange of other acidic protons (OH, NH, SH) are so rapid that they cannot be followed in these techniques and all subsequent discussion refers exclusively to peptide amide proton exchange. In these studies, purified proteins are on-exchanged by incubation in buffers containing tritiated water for varying periods of time, transferred to buffers free of tritium, and the rate of off-exchange of tritium determined. By analysis of the rates of tritium on- and off-exchange, estimates of the numbers of peptide amide protons in the protein whose exchange rates fall within particular exchange rate ranges can be made. These studies do not allow a determination of the identity (location within the protein's primary amino acid sequence) of the exchanging amide hydrogens measured.
Extensions of these techniques have been used to detect the presence within proteins of peptide amides which experience allosterically-induced changes in their local chemical environment and to study pathways of protein folding (5, 12-14). For these studies, tritium on-exchanged proteins are allowed to off-exchange after they have experienced either an allosteric change in shape, or have undergone time-dependent folding upon themselves, and the number of peptide amides which experience a change in their exchange rate subsequent to the allosteric/folding modifications determined. Changes in exchang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for the high-resolution identification of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for the high-resolution identification of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for the high-resolution identification of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3253448

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.