Optical switch, optical-fiber-arraying-member, production...

Optical waveguides – With optical coupler – Switch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S016000, C385S025000

Reexamination Certificate

active

06711322

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an optical-fiber-arraying-member that can be used in selective connection between optical fibers, a production method thereof, an arraying method of optical fibers, and an optical switch.
BACKGROUND ART
Optical switches have been used heretofore as devices for selectively connecting a small number of optical fibers to a large number of optical fibers in line connection tests, circuit tests, etc. in optical fiber communication lines.
For example, U.S. Pat. No. 5,446,810 discloses an optical switch having an optical fiber arranging member of a flat plate shape in which a plurality of optical fiber fixing grooves for optical fibers to be placed therein are formed in parallel on a flat plate. This optical switch is constructed in such structure that array-side optical fibers are placed in the respective fiber fixing grooves of the optical fiber arranging member, and that a carrying mechanism moves a moving-side optical fiber to selectively connect the moving-side optical fiber to an array-side optical fiber.
The optical switch provided with the optical fiber arranging member as described in the above U.S. Pat. No., however, had the following problems. For arranging a number of optical fibers in the structure wherein the optical fiber fixing grooves for the optical fibers to be placed therein were formed in parallel on the flat plate as described above, the size of the optical fiber arranging member had to be increased. Further, the moving-side optical fiber needed to be translationally moved by use of expensive ball screw, linear guide, and so on in order to selectively connect the moving-side optical fiber to either of the array-side optical fibers arrayed in parallel, and there arose problems of high cost and complexity of the carrying mechanism with increase in the size of the optical fiber arranging member.
In the optical switch described in the above U.S. Pat. No. 5,446,810, a plurality of optical fiber arranging members are arranged vertically in order to decrease the size in the optical fiber array direction of the optical fiber arranging members. This structure, however, necessitates a mechanism for moving the moving-side optical fiber in the vertical direction in order to selectively connect the moving-side optical fiber to either of the array-side optical fibers, which makes the carrying mechanism of the moving-side optical fiber more complex.
DISCLOSURE OF THE INVENTION
The present invention has been accomplished under such circumstances and an object of the invention is to provide an optical switch that permits compactification and simplification of the mechanism for selectively optically connecting the optical fibers, an optical-fiber-arraying-member, a production method thereof, and an arraying method of optical fibers.
An optical switch according to the present invention is an optical switch comprising: an optical-fiber-arraying-member in which a plurality of optical fiber fixing grooves extending along radial directions of a virtual circle are radially formed in a predetermined surface of a base material; a plurality of array-side optical fibers arrayed in the plurality of optical fiber fixing grooves of the optical-fiber-arraying-member; and a moving-side optical fiber to be selectively optically connected to either of the plurality of array-side optical fibers, wherein the moving-side optical fiber and the optical-fiber-arraying-member are rotated relative to each other about a center axis of the virtual circle to select the array-side optical fiber optically to be connected to the moving-side optical fiber.
With the optical switch according to the present invention, since the moving-side optical fiber is optically connected to the array-side optical fiber by rotating the moving-side optical fiber and the optical-fiber-arraying-member with the plurality of optical fiber fixing grooves radially formed, relative to each other about the center axis of the virtual circle, the moving-side optical fiber does not have to be moved in parallel in the array direction of the array-side optical fibers, different from the optical switch using the optical-fiber-arraying-member of the type in which a plurality of optical fiber fixing grooves are formed in parallel on a flat plate. This permits compactification and simplification of the mechanism for selectively optically connecting the optical fibers.
In the optical switch of the present invention, it is preferable that the optical switch comprise a carrying device for carrying the moving-side optical fiber, and an arraying-member rotating device for rotating the optical-fiber-arraying-member and that the moving-side optical fiber be optically connected to the array-side optical fiber by the carrying device and the arraying-member rotating device.
Further, the optical switch of-the present invention may also be constructed so that the base material is of a prism shape, the plurality of optical fiber fixing grooves are radially formed in at least two side faces of the base material, the base material and the moving-side optical fiber are rotated relative to each other about a center axis of the prism to select one side face of the base material, and the moving-side optical fiber is optically connected to either of the array-side optical fibers arrayed on said one side face selected.
In this case, a lot of array-side optical fibers can be arrayed, because the optical fiber fixing grooves are formed in a plurality of side faces of the prism. Since a side face of the base material with the array of array-side optical fibers to be optically connected is selected by simply rotating the base material and the moving-side optical fiber relative to each other, it becomes feasible to implement compactification and simplification of the mechanism for selectively optically connecting the optical fibers.
In this case, it is also preferable that the optical switch comprise base-material rotating means for rotating the base material about the center axis of the prism, a carrying device for carrying the moving-side optical fiber, and a moving-side-fiber rotating device for rotating the moving-side optical fiber about the center axis of the virtual circle and that the moving-side optical fiber be optically connected to the array-side optical fiber by the base-material rotating means, the carrying device, and the moving-side-fiber rotating device.
Further, the optical switch of the present invention may also be constructed so that the base material is of a pyramid shape, the plurality of optical fiber fixing grooves are radially formed in at least two side faces of the base material, the base material and the moving-side optical fiber are rotated relative to each other about a center axis of the pyramid to select one side face of the base material, and the moving-side optical fiber is optically connected to either of the array-side optical fibers arrayed on said one side face selected.
In this case, a lot of array-side optical fibers can be arrayed, because the optical fiber fixing grooves are formed in a plurality of side faces of the pyramid. Since a side face of the base material with the array of array-side optical fibers to be optically connected is selected by simply rotating the base material and the moving-side optical fiber relative to each other, it becomes feasible to implement compactification and simplification of the mechanism for selectively optically connecting the optical fibers.
In this case, it is also preferable that the optical switch comprise base-material rotating means for rotating the base material about the center axis of the pyramid, a carrying device for carrying the moving-side optical fiber, and a moving-side-fiber rotating device for rotating the moving-side optical fiber about the center axis of the virtual circle and that the moving-side optical fiber be optically connected to the array-side optical fiber by the base-material rotating means, the carrying device, and the moving-side-fiber rotating device.
Another optical switch according to the present invention is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical switch, optical-fiber-arraying-member, production... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical switch, optical-fiber-arraying-member, production..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical switch, optical-fiber-arraying-member, production... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252469

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.