Bioptical holographic laser scanning system

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S462250

Reexamination Certificate

active

06758402

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates generally to holographic laser scanners of ultra-compact design capable of reading bar code symbols in point-of-sale (POS) and other demanding scanning environments.
2. Brief Description of the Prior Art
The use of bar code symbols for product and article identification is well known in the art.
Presently, various types of bar code symbol scanners have been developed. In general, these bar code symbol readers can be classified into two distinct classes.
The first class of bar code symbol reader simultaneously illuminates all of the bars and spaces of a bar code symbol with light of a specific wavelength(s) in order to capture an image thereof for recognition and decoding purposes. Such scanners are commonly known as CCD scanners because they use CCD image detectors to detect images of the bar code symbols being read.
The second class of bar code symbol reader uses a focused light beam, typically a focused laser beam, to sequentially scan the bars and spaces of a bar code symbol to be read. This type of bar code symbol scanner is commonly called a “flying spot” scanner as the focused laser beam appears as “a spot of light that flies” across the bar code symbol being read. In general, laser bar code symbol scanners are subclassified further by the type of mechanism used to focus and scan the laser beam across bar code symbols.
The majority of laser scanners in use today, particular in retail environments, employ lenses and moving (i.e. rotating or oscillating) mirrors and/or other optical elements in order to focus and scan laser beams across bar code symbols during code symbol reading operations. In demanding retail scanning environments, it is common for such systems to have both bottom and side scanning windows to enable highly aggressive scanner performance, whereby the cashier need only drag a bar coded product past these scanning windows for the bar code thereon to be automatically read with minimal assistance of the cashier or checkout personal. Such dual scanning window systems are typically referred to as “bioptical” laser scanning systems as such systems employ two sets of optics disposed behind the bottom and side scanning windows thereof. Examples of polygon-based bioptical laser scanning systems are disclosed in U.S. Pat. Nos. 4,229,588 and 4,652,732, assigned to NCR, Inc., each incorporated herein by reference in its entirety.
In general, prior art bioptical laser scanning systems are generally more aggressive that conventional single scanning window systems. For this reason, bioptical scanning system are often deployed in demanding retail environments, such as supermarkets and high-volume department stores, where high check-out throughput is critical to achieving store profitability and customer satisfaction.
While prior art bioptical scanning systems represent a technological advance over most single scanning window system, prior art bioptical scanning systems in general suffered from various shortcomings and drawbacks.
In particular, by virtue of the dual scanning windows and supporting optics required by prior art bioptical laser scanning systems, such scanning systems have been physically larger than many retail environments would otherwise desire, as space near the point-of-sale is the most valuable space within the retail environment. Also, the laser scanning patterns of prior art bioptical laser scanning systems are not optimized in terms of scanning coverage and performance, and are generally expensive to manufacture by virtue of the large number of optical components presently required to constructed such laser scanning systems.
Thus, there is a great need in the art for an improved bioptical-type laser scanning bar code symbol reading system, while avoiding the shortcomings and drawbacks of prior art laser scanning systems and methodologies.
OBJECTS AND SUMMARY OF THE PRESENT INVENTION
Accordingly, a primary object of the present invention is to provide a novel bioptical-type holographic laser scanning system which is free of the shortcomings and drawbacks of prior art bioptical laser scanning systems and methodologies.
Another object of the present invention is to provide a bioptical holographic laser scanning system, wherein a plurality of pairs of quasi-orthogonal laser scanning planes are projected within predetermined regions of space contained within a 3-D scanning volume defined between the bottom and side scanning windows of the system.
Another object of the present invention is to provide a novel bioptical holographic laser scanning system, wherein the plurality of pairs of quasi-orthogonal laser scanning planes are produced using a holographic scanning disc having holographic scanning facets that have high and low elevation angle characteristics as well as left, right and zero skew angle characteristics.
Another object of the present invention is to provide a bioptical holographic laser scanning system, wherein the each pair of quasi-orthogonal laser scanning planes comprises a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder-type bar code symbols) that are oriented substantially horizontal with respect to the bottom scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom scanning window.
Another object of the present invention is to provide a bioptical holographic laser scanning system comprising a plurality of laser scanning stations, each of which produces a plurality of pairs of quasi-orthogonal laser scanning planes are projected within predetermined regions of space contained within a 3-D scanning volume defined between the bottom and side scanning windows of the system.
Another object of the present invention is to provide a bioptical holographic laser scanning system, wherein the plurality of pairs of quasi-orthogonal laser scanning planes are produced using a holographic scanning disc supporting holographic scanning facets having high and low elevation angle characteristics and left, right and zero skew angle characteristics.
Another object of the present invention is to provide a bioptical holographic laser scanning system, wherein each laser scanning station produces a plurality of pairs of quasi-orthogonal laser scanning planes which can read bar code symbol that is orientated with bar code elements arranged in either a substantially vertical (i.e. picket-fence) or substantially horizontal (i.e. ladder) configuration with respect to the horizontal scanning window of the system.
Another object of the present invention is to provide such a bioptical holographic laser scanning system employing four laser scanning systems, wherein the first and third laser scanning stations employ mirror groups and scanning facets having only high elevation characteristics and left and right skew angle characteristics so as to produce from each station a plurality of pairs of quasi-orthogonal laser scanning planes capable of reading bar code symbol orientated with bar code elements arranged in either a substantially vertical (i.e. picket-fence) or substantially horizontal (i.e. ladder) configuration with respect to the horizontal scanning window of the system.
Another object of the present invention is to provide such a bioptical holographic laser scanning system, wherein the second laser scanning station employs mirror groups and scanning facets having only low elevation characteristics and zero skew angle characteristics so as to produce from each station a plurality of pairs of quasi-orthogonal laser scanning planes capable of reading bar code symbol orientated with bar code elements arranged in either a substantially vertical. (i.e. picket-fence) or substantially horizontal (i.e. ladder) configuration with respect to the horizontal scanning window of the system.
Another object of the present invention is to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioptical holographic laser scanning system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioptical holographic laser scanning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioptical holographic laser scanning system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3251276

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.