Thermal insulator for protecting a storage tape in a tape drive

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Tape record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06791789

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to tape drives and devices used in tape drives to protect storage media from damage.
BACKGROUND
Tape drives that utilize a cartridge having a cartridge reel and a magnetic storage tape are commonly used to store relatively large amounts of data in digital form. The tape drive includes a tape head, a take-up reel and a plurality of spindle motors that operate to move the storage tape back and forth across the tape head, between the cartridge reel and the take-up reel. Further, the tape drive includes a printed circuit board assembly having a relatively complex system of various electrical components that control operation of the tape drive, and facilitate reading and writing of the data.
In an effort to increase the storage capacity of the cartridge, the storage tape is constructed from a material having a decreased thickness, which increases the length of storage that can be wound onto the cartridge reel. Additionally, magnetic storage tape is typically formed from materials that have a relatively low heat tolerance. Consequently, storage tape that is exposed to increased temperatures can become irreparably damaged, resulting in loss of data and/or inoperability of the cartridge.
Unfortunately, operation of the spindle motors and the drive circuitry generates a significant amount of heat within the tape drive. One attempt to reduce the transfer of heat to the storage tape includes physically positioning the spindle motors and the drive circuitry away from the storage tape. Unfortunately, over time, the heat generated by these structures nevertheless radiates to areas of the tape drive through which the storage tape moves. Another attempt includes using external fans that circulate air through air holes in the drive housing near the storage tape in order to keep the storage tape relatively cool. However, excessive air movement near the storage tape can cause unwanted movement of the storage tape relative to the tape head, which can lead to reading and/or writing errors. Further, introducing external air into the drive housing can expose the storage tape to contaminants, which can potentially damage the storage tape and the tape head.
In light of the above, the need exists to provide a tape drive that decreases the transfer of heat to the storage tape. Another need exists to provide a tape drive that reduces reading and/or writing errors caused by unwanted tape movement. A further need exists to decrease contaminants near the storage tape and the tape head.
SUMMARY
The present invention is directed to a tape drive for use with a cartridge having a storage tape that moves along a tape path during operation of the tape drive. The tape drive includes a drive housing defining a drive interior, a circuit assembly including an electrical component that generates heat, and a thermal insulator that is coupled to the drive housing. In one embodiment, the thermal insulator is positioned substantially between a portion of the storage tape and the circuit assembly. Moreover, the thermal insulator can be formed from a flexible, plastic material and/or can have a thermal conductivity of less than approximately 50 W/mK. With this design, the thermal insulator decreases the transfer of heat between the electrical component and the tape path during operation of the tape drive. In alternative embodiments, the thermal insulator has a thermal conductivity of less than approximately 10 W/mK or less than 1 W/mK.
In another embodiment, the drive interior has a first region that includes a portion of the tape path, and a second region that includes the circuit assembly. The drive housing also includes a plurality of ventilation apertures that extend between an exterior of the drive housing and the first region, and between the exterior of the drive housing and the second region. The area of the ventilation apertures extending between the exterior of the drive housing and the first region can be less than approximately 200 percent of the area of the ventilation apertures extending between the exterior of the drive housing and the second region. Alternatively, the area of the ventilation apertures extending between the exterior of the drive housing and the first region can be less than approximately 100 percent, less than approximately 50 percent, or less than approximately 25 percent of the area of the ventilation apertures extending between the exterior of the drive housing and the second region.
The present invention is also directed toward a tape drive assembly including the tape drive and an air mover positioned outside of the drive housing. The air mover moves air through the ventilation apertures of the first region and the second region at a ratio of less than approximately 2:1.
The present invention is also directed to a method for manufacturing a tape drive.


REFERENCES:
patent: 4608615 (1986-08-01), Zeavin
patent: 5923496 (1999-07-01), Perona

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermal insulator for protecting a storage tape in a tape drive does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermal insulator for protecting a storage tape in a tape drive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal insulator for protecting a storage tape in a tape drive will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249514

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.