Registers – Coded record sensors – Particular sensor structure
Reexamination Certificate
2001-06-15
2004-07-27
Lee, Michael G. (Department: 2876)
Registers
Coded record sensors
Particular sensor structure
C235S462010, C235S462080, C235S462490, C235S462200, C235S462320, C235S462430
Reexamination Certificate
active
06766954
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to systems and methods using solid state sensors for reading of optical codes such as UPC code.
BACKGROUND OF THE INVENTION AND OBJECTS
Optical codes are patterns made up of image areas having different light reflective or light emissive properties, which are typically assembled in accordance with a priori rules. The term “bar code” is sometimes used to describe certain kinds of optical codes. The optical properties and patterns of optical codes are selected to distinguish them in appearance from the background environments in which they are used. Devices for identifying or extracting data from optical codes are sometimes referred to as “optical code readers” of which bar code scanners are one type. Optical code readers are used in both fixed or portable installations in many diverse environments such as in stores for check-out services, in manufacturing locations for work flow and inventory control and in transport vehicles for tracking package handling. The optical code can be used as a rapid, generalized means of data entry, for example, by reading a target bar code from a printed listing of many bar codes. In some uses, the optical code reader is connected to a portable data processing device or a data collection and transmission device. Frequently, the optical code reader includes a handheld sensor which is manually directed at a target code.
Most conventional optical scanning systems are designed to read one-dimensional bar code symbols. The bar code is a pattern of variable-width rectangular bars separated by fixed or variable width spaces. The bars and spaces have different light reflecting characteristics. One example of a one dimensional bar code is the UPC/EAN code used to identify, for example, product inventory.
Bar codes can be read employing imaging devices. For example an image sensor may be employed which has a two dimensional array of cells or photo sensors which correspond to image elements or pixels in a field of view of the device. Such an image sensor may be a two dimensional or area charge coupled device (CCD) and associated circuits for producing electronic signals corresponding to a two-dimensional array of pixel information for a field of view. A one-dimensional linear array of photodiodes is also known for use in detecting a bar code reflection image. See, e.g., U.S. Pat. No. 6,138,915 to Danielson et al.
It is known in the art to use a CCD photo detector and objective lens assembly in an optical code reader. In the past, such systems have employed complex objective lens assemblies originally designed for use in relatively expensive video imaging systems. Such systems may have a single sharp focus and a limited depth of field, which along with conventional aiming, illumination and signal processing and decoding algorithms, limits the versatility and working range of the system.
Other known imaging systems are designed primarily for reading optical codes. Such reading systems involve the assembly and alignment of several small parts. These parts may include a lens, an aperture and a 2D optical detector array such as a CCD chip. Such a structure is illustrated, for example, in U.S. patent application Ser. No. 09/096,578 for Imaging Engine and Method for Code Readers to Correa et al. filed Jun. 12, 1998 and assigned to Symbol Technologies, Inc. The Correa et al. application is hereby incorporated by reference herein.
It is an object of the present invention to further reduce the expense and difficulty associated with providing an optical code reading system.
It is known to provide illumination in optical code readers by employing illuminating devices to supplement ambient light. For example, U.S. Pat. No. 5,703,349 discloses an illumination module comprised of two lines of illuminating LEDs and lens cells. The above mentioned Correa et al. patent application also discloses an illumination system for a hand held optical code imager.
Existing one-dimensional imaging systems utilize off-the-shelf linear CCD detectors. A typical linear detector contains a few thousand pixels and has a total image length of about 28 mm. The focal length for a system using such a detector is approximately 38 mm assuming a field of view of 40 degrees. With a 0.4 mm wide by 6.2 mm high aperture the effective F-number (for light throughput) of the system is 21.4. Significant illumination is required for reasonable performance with such a system, and the device cannot be miniaturized.
It is a further object of the present invention to provide improved miniaturized code readers using one-dimensional solid state sensors.
Conventional code readers using one-dimensional sensor array require the code reader to be oriented so that the array is approximately parallel to the principle axis of the code being read. This may present problems during use in that the target object and/or the code reader may need to be realigned to produce a successful code reading.
It is a further object of the present invention to improve the ease with which a code reader which uses one-dimensional sensor technology can be aimed and aligned.
Conventional sensor array based code readers have employed a gun-shaped housing. However, such systems have required a relatively complex arrangement of circuit interconnections.
It is a further object of the present invention to interconnect and carry most or all of the circuit elements of a code reader on a single circuit board located in a gun-shaped housing.
These and other objects and features of the invention will be apparent from this written description and the drawings.
SUMMARY OF THE INVENTION
The present invention relates to apparatus useful in optical code readers.
One-dimensional solid state photo sensor arrays may be employed in these code readers. The terms “one-dimensional” and “line” when used to describe arrays and sensors are intended to include linear arrangements of sensor cells including curved, segmented or straight lines of sensors cells. In preferred embodiments the arrays may contain relatively low numbers of cells for example about 1000 (e.g. a 1024 cell array) or about 500 (e.g. a 512 cell array), arranged in a straight line.
Systems of the present invention are particularly well adapted for reading a target one-dimensional optical code symbol whose principle axis has an arbitrary orientation in a plane generally parallel to an image plane of the sensor assembly. The system may include two or more photo sensor arrays each having cells arranged in a line, where the lines of the arrays are oriented at an angle to one another. This arrangement permits omni directional reading of one-dimensional optical code symbols. In order to read the code, the code reader is pointed at the code symbol so that the optical axis of the code reader is roughly perpendicular to a plane of the surface on which the symbol appears, but without regard to the orientation of the symbol in that plane.
A particularly preferred embodiment of the present invention employs three solid state photo sensor arrays each having cells arranged in a generally straight line are employed. The arrays produce electronic signals corresponding to at least a portion of the code symbol. The lines of the three arrays are oriented at an angle with respect to one another, preferably a 60° angle.
A focusing system, such as a lens associated with each array, may be used to focus an image on each array. Where the focusing system includes three lenses, each one may have an optical axis which approximately intersects a mid point of the line of its respective photo sensor array.
The assembly may also include an electronic system for converting to digital form the electronic signals from the one of the sensor array whose line is most closely aligned with the principle axis of the target code symbol. Such an electronic system may include a sensor processor and software performing the function of a high blur digitizer. The selection of the data derived from the electronic signal from a particular one or ones of the sensors arrays may be made by attempting to d
Barkan Edward
Patel Mehul
Kim Ahshik
Lee Michael G.
Symbol Technologies Inc.
LandOfFree
Omnidirectional linear sensor-based code reading engines does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Omnidirectional linear sensor-based code reading engines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Omnidirectional linear sensor-based code reading engines will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3246710