Methods and compositions for the manufacture of C-3′...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S017200, C536S017300, C536S017500, C536S018500

Reexamination Certificate

active

06673907

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the treatment of cancer. More particularly, it concerns novel compounds useful for chemotherapy, methods of synthesis of these compounds and methods of treatment employing these compounds. These novel drugs comprise two main classes of compounds; one bearing modified substituents at the C-3′ sugar moiety and the other bearing modifications at the C-4′ sugar moiety. In addition, some of these analogs might also be modified at the aglycon and/or sugar moiety. These novel anthracycline analogs display high anti-tumor activity and can be used as potent drugs active against multi-drug resistant tumors. These compounds are related to other anti-tumor anthracyclines such as daunorubicin, idarubicin, epirubicin, and doxorubicin. The cytotoxic potency of these new compounds is significantly higher when compared to doxorubicin.
2. Description of Related Art
Resistance of tumor cells to the killing effects of chemotherapy is one of the central problems in the management of cancer. It is now apparent that at diagnosis many human tumors already contain cancer cells that are resistant to standard chemotherapeutic agents. Spontaneous mutation toward drug resistance is estimated to occur in one of every 10
6
to 10
7
cancer cells. This mutation rate appears to be independent of any selective pressure from drug therapy, although radiation therapy and chemotherapy may give rise to additional mutations and contribute to tumor progression within cancer cell populations (Goldie et al., 1979; Goldie et al., 1984; Nowell, 1986). The cancer cell burden at diagnosis is therefore of paramount importance because even tumors as small as 1 cm (10
9
cells) could contain as many as 100 to 1,000 drug-resistant cells prior to the start of therapy.
Selective killing of only the tumor cells sensitive to the drugs leads to an overgrowth of tumor cells that are resistant to the chemotherapy. Mechanisms of drug resistance include decreased drug accumulation (particularly in multi-drug resistance), accelerated metabolism of the drug and other alterations of drug metabolism, and an increase in the ability of the cell to repair drug-induced damage (Curt el al., 1984; and Kolate, 1986). The cells that overgrow the tumor population not only are resistant to the agents used but also tend to be resistant to other drugs, many of which have dissimilar mechanisms of action. This phenomenon, called pleiotropic drug resistance or multi-drug resistance (MDR), may account for much of the drug resistance that occurs in previously treated cancer patients. The development of drug resistance is one of the major obstacles in the management of cancer. One of the traditional ways to attempt to circumvent this problem of drug resistance has been combination chemotherapy.
Combination drug therapy is the basis for most chemotherapy employed to treat breast, lung, and ovarian cancers as well as Hodgkin's disease, non-Hodgkin's lymphomas, acute leukemias, and carcinoma of the testes. Combination chemotherapy uses the differing mechanisms of action and cytotoxic potentials of multiple drugs.
Although combination chemotherapy has been successful in many cases, the need still exists for new anti-cancer drugs. These new drugs could be such that they are useful in conjunction with standard combination chemotherapy, or these new drugs could attack drug resistant tumors by having the ability to kill cells of multiple resistance phenotypes.
A drug that exhibits the ability to overcome multiple drug resistance could be employed as a chemotherapeutic agent either alone or in combination with other drugs. The potential advantages of using such a drug in combination with chemotherapy would be the need to employ fewer toxic compounds in the combination, cost savings, and a synergistic effect leading to a treatment regime involving fewer treatments.
The commonly used chemotherapeutic agents are classified by their mode of action, origin, or structure, although some drugs do not fit clearly into any single group. The categories include alkylating agents, anti-metabolites, antibiotics, alkaloids, and miscellaneous agents (including hormones). Agents in the different categories have different sites of action.
Antibiotics are biologic products of bacteria or fungi. They do not share a single mechanism of action. The anthracyclines daunorubicin and doxorubicin (DOX) are some of the more commonly used chemotherapeutic antibiotics. The anthracyclines achieve their cytotoxic effect by several mechanisms, including inhibition of topoisomerase II; intercalation between DNA strands, thereby interfering with DNA and RNA synthesis; production of free radicals that react with and damage intracellular proteins and nucleic acids; chelation of divalent cations; and reaction with cell membranes. The wide range of potential sites of action may account for the broad efficacy as well as the toxicity of the anthracyclines (Young et al., 1985).
The anthracycline antibiotics are produced by the fungus
Streptomyces peuceitius
var.
caesius.
Although they differ only slightly in chemical structure, daunorubicin has been used primarily in the acute leukemias, whereas doxorubicin displays broader activity against human neoplasms, including a variety of solid tumors. The clinical value of both agents is limited by an unusual cardiomyopathy, the occurrence of which is related to the total dose of the drug; it is often irreversible. In a search for agents with high anti-tumor activity but reduced cardiac toxicity, anthracycline derivatives and related compounds have been prepared. Several of these have shown promise in the early stages of clinical study, and some, like epirubicin and idarubicin, are used as drugs. Epirubicin outsells doxorubicin in Europe and Japan, but it is not sold in the U.S.
The anthracycline antibiotics have tetracycline ring structures with an unusual sugar, daunosamine, attached by glycosidic linkage. Cytotoxic agents of this class all have quinone and hydroquinone moieties on adjacent rings that permit them to function as electron-accepting and donating agents. Although there are marked differences in the clinical use of daunorubicin and doxorubicin, their chemical structures differ only by a single hydroxyl group on C14. The chemical structures of daunorubicin and doxorubicin are shown in FIG.
1
.
Doxorubicin's broad spectrum of activity against most hematological malignancies as well as carcinomas of the lung, breast, and ovary has made it a leading agent in the treatment of neoplastic disease (Arcamone, 1981; Lown, 1988; Priebe, 1995). Since the discovery of daunorubicin and doxorubicin (FIG.
1
), the mechanistic details of the anti-tumor activity of anthracycline antibiotics have been actively investigated (Priebe, 1995a; Priebe, 1995b; Booser, 1994).
Unfortunately, concomitant with its anti-tumor activity, DOX can produce adverse systemic effects, including acute myelosuppression, cumulative cardiotoxicity, and gastrointestinal toxicity (Young et al., 1985). At the cellular level, in both cultured mammalian cells and primary tumor cells, DOX can select for multiple mechanisms of drug resistance that decrease its chemotherapeutic efficacy. These mechanisms include P-gp-mediated MDR and MPR-rediated MDR, characterized by the energy-dependent transport of drugs from the cell (Bradley et al., 1988), and resistance conferred by decreased topoisomerase II activity, resulting in the decreased anthracycline-induced DNA strand scission (Danks et al., 1987; Pommier el al., 1986; Moscow et al., 1988).
Among the potential avenues of circumvention of systemic toxicity and cellular drug resistance of the natural anthracyclines is the development of semi-synthetic anthracycline analogues which demonstrate greater tumor-specific toxicity and less susceptibility to various forms of resistance.
SUMMARY OF THE INVENTION
The present invention seeks to overcome drawbacks inherent in the prior art by providing compositions of agents that display

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for the manufacture of C-3′... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for the manufacture of C-3′..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for the manufacture of C-3′... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3236567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.