Automated system for control and diagnostics for dispensing...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S244000, C700S265000, C222S052000, C222S638000, C222S639000, C137S003000, C137S004000, C137S088000

Reexamination Certificate

active

06704617

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a foam dispensing system, and more particularly to an automated monitoring and diagnostic system for use with foam dispensing systems that permits remote control of the dispensing of foam.
Many foam-dispensing systems are known in the art and are used in different industries. These systems are used to dispense two component polyurethane foams in various applications. Such foams are made from two reactive foam components that are mixed together to form an expansive foam. This foam has many different uses. It may be used to provide thermal insulation to apparatus, such as whirlpool or spa tubs, or it may be used to provide sound and/or thermal insulation to electronic and mechanical devices, or it can be used to provide packing cushions for the shipping of products.
Taking the packing cushion industry as an example, many foam injection systems are known in which a hand-held dispensing gun, or unit, is connected to remote supplies of the two foam components by a pair of hoses. This hand-held dispensing unit may be fed from a local storage supply of the two foam components by way of a pair of pumps, each of which propel foam components through their respective hoses to the dispenser. Alternatively, the dispenser may be connected to bulk supply sources of these components by lengthy pipes or tubes. A manufacturing facility may utilize multiple foam dispensing stations, each with their own dispenser. It is difficult to monitor the pumps, supply sources, and foam component ratios and pressures at all of these multiple locations. In order to determine if each station is operating at its peak efficiency, an operator must examine these parameters for each dispensing station. Where dispensing stations are fed by separate supply sources, the supply of foam components cannot be monitored on a real time basis, but rather each supply source must be monitored and compared to the other supply sources. This requires an excessive amount of time and effort on the part of the system operator(s).
Other operational parameters that need to be monitored in the foam dispensing industry relate to maintenance and trouble-shooting of the dispensing systems. Mechanical wear on the dispensing system components include the wear and tear on the foam component pumps and the dispensing nozzles. In the current state of operation, a plant operator has to examine each and every dispensing station and its associated components. Accordingly, technicians must be dispatched to foam dispensing plant sites, which is both time consuming and expensive.
Some automated systems for monitoring dispensing apparatus are known and utilize multiple monitors. As the operator dispenses the foam components, monitors associated with the foam component supplies may provide an indication as to various parameters of the foam components such as temperature, pressure, and volume. The operators may read these parameters and adjust them, if necessary. In instances such as this, the operator must leave his dispensing station and walk over to a controller of the system to make the necessary adjustments. An example of such a system is described in U.S. Pat. No. 5,388,761, issued Feb. 14, 1995.
Other automated systems are described in U.S. Pat. No. 5,870,698, issued Feb. 9, 1999, and U.S. Pat. No. 5,608,643, issued Mar. 4, 1997. In the latter of these two patents, a system is described for managing multiple dispensing units that are bins that contain a preselected number and level of objects. The bins each have a level sensor that is coupled to a controller so as to inform a system operator of a low condition of objects in the bin. Although in this system, multiple bins are linked together by a network of sensors, no provision is made for diagnostic measures or any other operational system parameters that are returned as data to the central controller of the network for analysis and adjustment. The bin-dispensing nature of this system does not include aspects of wear and flow passage buildup, or even temperature, all of which are factors that influence and effect the dispensing of expandable foams.
One system currently known in the field of foam dispensing involves the use of various components manufactured by the Gusmer Company of Lakewood, N.J. Gusmer manufactures chemical component spray guns that may be used in association with its Model VH-300 High Pressure Metering Unit. This unit is very large and contains a pair of chemical component pumps that are mounted in the unit and controllable from an operation console of the unit. Heaters are supplied with supply hoses and are controllable from the console to maintain the temperatures of the chemical components. The time of the chemical dispensing may be measured by timers that interface with the unit and gun. Although this unit is mounted on wheels and thus is movable, it is not equipped with the necessary electronics to permit remote monitoring of the system operating parameters. No means are provided to interconnect the unit with other such units, nor are any means provided by which the data from many such units can be collected and analyzed to optimize the dispensing of foam.
Another system made by Cannon Afros USA of Cranberry Township, Pa. and is known as their “A-System”. This system is hard mounted to a factory floor and incorporates in it, a bulky support structure that supports a pair of chemical component supply tanks with self-contained agitator motors that output to supply pumps driven by a single motor. Hoses deliver the chemical components to a dispensing gun. This system utilizes a controller that controls the process parameters of the foam dispensing system during operation.
These aforementioned systems measure some parameters, but are disadvantageous because they suffer from a lack of important and total information exchange and are extremely limited in the data that they collect. Such systems are mostly dedicated only to monitoring the supply and flow of the foam components.
The present invention, therefore, is directed to a system that overcomes the aforementioned disadvantages
SUMMARY OF THE INVENTION
Accordingly, it is a general object of the present invention to provide a control and diagnostic system for use with the foam dispensing industry in which the system links together individual foam dispensing systems with a computer network and a controller.
Another object of the present invention is to provide an integrated control system for use in a foam dispensing operation that interconnects and exchanges data among a plurality of stations used in a foam dispensing process, and a controller so as to permit the exchange of information about operational parameters of the foam dispensing operation among the stations and a controller.
A further object of the present invention is to provide a control and diagnostic system for use in the foam-dispensing field, wherein two-components foams are dispensed from dispensers at various foam dispensing stations, the system tying together, from an information exchange aspect, individual foam dispensing stations, foam component dispensed from the total supply, foam component delivery stations, and other related stations so that the pressure and temperature of the foam components may also be monitored at a remote location and controlled from a remote console.
Yet another object of the present invention is to provide a system for monitoring the status of various foam component stations associated with a foam dispensing operation, the system including a plurality of sensors disposed at various stations in the foam dispensing operation, the sensors being interconnected with a central controller by way of data communication links, the sensors reading status of the stations and relaying the status of the stations to the central controller.
Still another object of the present invention is to provide a control and diagnostic system for a foam dispensing operation utilizing a plurality of sensors disposed at individual stations of the foam dispensing operation, the sensors bei

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated system for control and diagnostics for dispensing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated system for control and diagnostics for dispensing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated system for control and diagnostics for dispensing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3231997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.