Low temperature yoke type tunnel valve sensor

Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06724587

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a low temperature yoke type tunnel valve sensor and, more particularly, to such a sensor wherein first and second copper structures conduct heat to at least one of two yoke layers wherein the yoke layers conduct a tunneling current (I
T
) to the tunnel valve sensor and transmit flux from an air bearing surface (ABS) to the sensor.
2. Description of the Related Art
The heart of a computer is a magnetic disk drive which includes a rotating magnetic disk, a slider that has read and write heads, a suspension arm above the rotating disk and an actuator arm that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The suspension arm urges the slider into contact with the surface of the disk when the disk is not rotating but, when the disk rotates, air is swirled by the rotating disk adjacent an air bearing surface (ABS) of the slider causing the slider to ride on an air bearing a slight distance from the surface of the rotating disk. When the slider rides on the air bearing the write and read heads are employed for writing magnetic impressions to and reading magnetic signal fields from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
An exemplary high performance read head employs a tunnel valve sensor for sensing the magnetic signal fields from the rotating magnetic disk. The sensor includes a nonmagnetic electrically nonconductive tunneling or barrier layer sandwiched between a ferromagnetic pinned layer and a ferromagnetic free layer. An antiferromagnetic pinning layer interfaces the pinned layer for pinning the magnetic moment of the pinned layer 90° to an air bearing surface (ABS) wherein the ABS is an exposed surface of the sensor that faces the rotating disk. The tunnel valve sensor is located between ferromagnetic first and second shield layers. First and second leads, which may be the first and second shield layers, are connected to the tunnel valve sensor for conducting a tunneling current therethrough. The tunneling current is conducted perpendicular to the major film planes (CPP) of the sensor as contrasted to a spin valve sensor where a sense current is conducted parallel to the major film planes (CIP) of the spin valve sensor. A magnetic moment of the free layer is free to rotate upwardly and downwardly with respect to the ABS from a quiescent or zero bias point position in response to positive and negative magnetic signal fields from the rotating magnetic disk. The quiescent position of the magnetic moment of the free layer, which is parallel to the ABS, is when the tunneling current is conducted through the sensor without magnetic field signals from the rotating magnetic disk.
When the magnetic moments of the pinned and free layers are parallel with respect to one another the resistance of the tunnel valve sensor to the tunneling current (I
T
) is at a minimum and when their magnetic moments are antiparallel the resistance of the tunnel valve sensor to the tunneling current (I
T
) is at a maximum. Changes in resistance of the tunnel valve sensor is a function of cos &thgr;, where &thgr; is the angle between the magnetic moments of the pinned and free layers. When the tunneling current (I
T
) is conducted through the tunnel valve sensor, resistance changes, due to field signals from the rotating magnetic disk, cause potential changes that are detected and processed as playback signals. The sensitivity of the tunnel valve sensor is quantified as magnetoresistive coefficient dr/R where dr is the change in resistance of the tunnel valve sensor from minimum resistance (magnetic moments of free and pinned layers parallel) to maximum resistance (magnetic moments of the free and pinned layers antiparallel) and R is the resistance of the tunnel valve sensor at minimum resistance. The dr/R of a tunnel valve sensor can be on the order of 40% as compared to 10% for a spin valve sensor.
The first and second shield layers may engage the bottom and the top respectively of the tunnel valve sensor so that the first and second shield layers serve as leads for conducting the tunneling current (I
T
) through the tunnel valve sensor perpendicular to the major planes of the layers of the tunnel valve sensor. The tunnel valve sensor has first and second side surfaces which intersect the ABS. First and second hard bias layers abut the first and second side surfaces respectively for longitudinally biasing the free layer. This longitudinal biasing maintains the free layer in a single magnetic domain state and helps to maintain the magnetic moment of the free layer parallel to the ABS when the read head is in the quiescent condition.
Magnetic head assemblies, wherein each magnetic head assembly includes a read head and a write head combination, are constructed in rows and columns on a wafer. After completion at the wafer level, the wafer is diced into rows of magnetic head assemblies and each row is lapped by a grinding process to lap the row to a predetermined air bearing surface (ABS). In a typical tunnel valve read head all of the layers are exposed at the ABS, namely first edges of each of the first shield layer, the seed layer, the free layer, the barrier layer, the pinned layer, the pinning layer and the second shield layer. Opposite edges of these layers are recessed in the head. The barrier layer is a very thin layer, on the order of 20 Å, which places the free and pinned layers very close to one another at the ABS. When a row of magnetic head assemblies is lapped there is a high risk of magnetic material from the free and pinned layers smearing across the barrier layer at the ABS to cause a short therebetween. Accordingly, there is a strong-felt need to construct magnetic head assemblies with tunnel valve heads without the risk of shorting between the free and pinned layers at the ABS due to lapping.
SUMMARY OF THE INVENTION
The present invention provides a read head which includes a tunnel valve sensor and first and second yoke layers wherein the tunnel valve sensor is recessed from the ABS and the first and second yoke layers are magnetically connected to the tunnel valve sensor and extend to the ABS for conducting signal fields from a rotating magnetic disk to the tunnel valve sensor. Because of the recessed location of the tunnel valve sensor, lapping of the head will not smear conductive material across the barrier layer of the tunnel valve sensor so as to short a tunneling current (I
T
) across the barrier layer. In a preferred embodiment, a first yoke layer below the tunnel valve sensor is wide at the ABS and maintains its width as it extends into the head from the ABS. The first yoke layer provides a heat sink for the tunnel valve sensor. In contrast, the second yoke layer is very narrow at the ABS so as to establish and define a track width of the read head and increases in width from the ABS to a magnetic coupling to the tunnel valve sensor. With this arrangement a very narrow track width can be obtained while the width of the tunnel valve sensor is large so as to reduce resistance of the tunnel valve sensor to the tunneling current (I
T
). From the tunnel valve sensor the second yoke layer maintains a larger width than the track width and provides another heat sink for the tunnel valve sensor. The distance between the first and second yoke layers at the ABS defines the read gap of the read head. This read gap is significantly less than when the tunnel valve sensor is located at the ABS and the read gap is defined by the distance between first and second shield layers. The narrow read gap enables more magnetic bits to be placed per linear inch along the track of the rotating magnetic disk. The narrow track width enables more tracks to be placed per inch along a radius of the rotating magnetic disk. A product of these two values, bits per inch (BPI) and tracks per inch (TPI), is the areal density of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low temperature yoke type tunnel valve sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low temperature yoke type tunnel valve sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low temperature yoke type tunnel valve sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3228409

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.