Production method of substituted benzenes

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S649000

Reexamination Certificate

active

06787665

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to production methods of 3,5-dichloro-4-(3-hydroxypropoxy)-1-substituted-benzenes and 3,5-dichloro-4-(3-acetyloxypropoxy)-1-substituted-benzenes.
BACKGROUND ARTS
In U.S. Pat. No. 5,827,137 and U.S. Pat. No. 5,922,880, 3,5-dichloro-4-(3-hydroxypropoxy)-1-substituted-benzenes are described as intermediates for producing a kind of dihalopropene compounds having insecticidal/acaricidal activity. Further, described is a production method of the 3,5-dichloro-4-(3-hydroxypropoxy)-1-substituted-benzenes by making a 3,5-dichloro-4-(3-bromopropoxy)-1-substituted-benzene compound react with benzoic acid and potassium carbonate in the presence of N,N-dimethylformamide to give a 3,5-dichloro-4-(3-benzoyloxypropoxy)-1-substituted-benzene compound and then allowing the product to be hydrolyzed in said publications.
However, the first step that is the reaction of the 3,5-dichloro-4-(3-bromopropoxy)-1-substituted-benzene compound with benzoic acid and potassium carbonate needs N,N-dimethylformamide, which is desired to avoid the use of a large amount in an industrial production, as a solvent. (cf. U.S. Pat. No. 5,922,880, col. 107) On the other hand, when said reaction is carried out in an aromatic hydrocarbon which is available in an industrial production, it needs a large amount of the solvent because the solubility of the obtained 3,5-dichloro-4-(3-benzoyloxypropoxy)-1-substituted-benzene compound in the aromatic hydrocarbon is low. Therefore, it is not beneficial in an industrial production.
The object of the present invention is to provide industrially advantageous methods for producing 3,5-dichloro-4-(3-hydroxypropoxy)-1-substituted-benzenes which are useful as intermediates for producing an insecticidal/acaricidal compounds and for producing 3,5-dichloro-4-(3-acetyloxypropoxy)-1-substituted-benzenes which are their precursors.
SUMMARY OF THE INVENTION
The advantageous method for producing 3,5-dichloro-4-(3-hydroxypropoxy)-1-substituted-benzenes in an industrial production was studied and found that 3,5-dichloro-4-(3-acetyloxypropoxy)-1-substituted-benzenes can be produced by making 3,5-dichloro-4-(3-halopropoxy)-1-substituted-benzenes react with an alkali metal salt of acetic acid in the presence of an aromatic hydrocarbon and that the 3,5-dichloro-4-(3-acetyloxypropoxy)-1-substituted-benzenes can be lead to 3,5-dichloro-4-(3-hydroxypropoxy)-1-substituted-benzenes. The method does not need N,N-dimethylformamide as a solvent or a large amount of solvent.
Namely, the present invention provides a production method of an ester compound given by formula (1):
wherein R represents a 3,3-dihalo-2-propenyl group or a benzyl group optionally substituted by halogen atom(s), which comprises making a compound given by formula (2):
wherein X represents a chlorine atom or bromine atom and R means as described below
react with an alkali metal salt of acetic acid in the presence of an aromatic hydrocarbon (hereinafter, referred to as the production method 1 of the present invention).
The present invention also provides a production method of a 3-phenoxypropanol compound given by formula (3):
wherein R means as defined below, which comprises making a compound given by formula (2):
wherein X represents a chlorine atom or bromine atom and R represents a 3,3-dihalo-2-propenyl group or a benzyl group optionally substituted by halogen atom(s),
react with an alkali metal salt of acetic acid in the presence of an aromatic hydrocarbon, and then making the product react with an alkali metal hydroxide and water (hereinafter, referred to as the production method 2 of the present invention, further the combination of the method 1 of the present invention together with the method 2 of the present invention is referred to as the production methods of the present invention).
Furthermore, the present invention provides an ester compound given by formula (1):
wherein R represents a 3,3-dihalo-2-propenyl group or a benzyl group optionally substituted by halogen atom(s).
The ester compounds given by formula (1) are hydrolyzed in alkali water to give the 3-phenoxypropanol compounds given by formula (3) those are useful as intermediates for producing the above-mentioned insecticidal/acaricidal compounds.
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, examples of the 3,3-dihalo-2-propenyl group include 3,3-dichloro-2-propenyl group and 3,3-dibromo-2-propenyl group. The benzyl group optionally substituted by halogen atom(s) is exemplified by a benzyl groups whose hydrogen atom(s) on its benzene ring may be substituted by at least one halogen atom, and the typical examples are benzyl group and 4-chlorobenzyl group.
The production method 1 of the present invention is explained at first.
The production method 1 of the present invention is characterized by making the compound given by formula (2) react with an alkali metal salt of acetic acid in the presence of an aromatic hydrocarbon.
Examples of the aromatic hydrocarbon used for the reaction include toluene, xylene, mesitylene and ethylbenzene. The amount of the aromatic hydrocarbon used for the reaction is usually in the range of 0.1 to 10 parts by weight based on 1 part by weight of the compound given by formula (2), preferably 0.1 to 1 part by weight, more preferably 0.1 to 0.25 part by weight, and furthermore preferably 0.1 to 0.2 part by weight based on 1 part by weight of the compound given by formula (2) in the view of the reaction rate.
Examples of the alkali metal salt of acetic acid used for the reaction include sodium acetate and potassium acetate. The alkali metal salt of acetic acid can also be prepared by mixing acetic acid with an alkali metal hydroxide in the reaction mixture. The amount of the alkali metal salt of acetic acid used for the reaction is usually in the range of is usually in the ratio of 1 to 2 mols based on 1 mol of the compound given by formula (2), preferably 1.3 mols or more in the view of the reaction rate, and preferably 1.7 mols or less in the view of the economical reason.
It is preferable that the reaction is carried out in the presence of a phase transfer catalyst in the view of the yield. In such cases, examples of the phase transfer catalysts used for the reaction include tertiary ammonium salts such as tetra-n-butylammonium bromide, tetra-n-butylammonium chloride and so on. The amount of the phase transfer catalyst used for the reaction is usually in the ratio of 0.01 to 0.1 mol based on 1 mol of the compound given by formula (2).
The reaction temperature is usually in the range of 20 to 120° C. Among them, it is preferably 100° C. or more in the view of the reaction rate.
The reaction can be, for example, carried out by mixing the compound given by formula (2) with the aromatic hydrocarbon, adding the alkali metal salt of acetic acid and optionally the phase transfer catalyst thereto, and stirring. In that case, the alkali metal salt of acetic acid can be added at once or portionwise. The reaction can also be carried out by adding acetic acid and an alkali metal hydroxide to a mixture of the compound given by formula (2) and the aromatic hydrocarbon, and stirring.
The proceeding status of the reaction can be confirmed by means for analyzing the reaction product such as high performance liquid chromatography and the like.
After the reaction, the ester compound given by formula (1) can be isolated by work-up procedures, for example, obtaining an organic layer by water-organic solvent phase separation of the reaction mixture, and concentrating the organic layer.
Further, the reaction mixture can be provided for the next steps without performing the work-up procedures.
Next, the production method 2 of the present invention is explained below.
The production method 2 of the present invention is characterized by making the compound given by formula (2) react with an alkali salt of acetic acid in the presence of an aromatic hydrocarbon, followed by making the product react with an alkali metal hydroxide and water.
Namely, the method 2 of the present invention comprise

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production method of substituted benzenes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production method of substituted benzenes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production method of substituted benzenes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225938

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.