Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...
Reexamination Certificate
2001-08-02
2004-01-27
Gorr, Rachel (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From reactant having at least one -n=c=x group as well as...
C528S064000, C528S065000, C528S079000, C473S342000
Reexamination Certificate
active
06683152
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to golf balls and, more specifically, to golf balls having components such as cores, intermediate layers, and covers formed of a polymer blend comprising a polyurethane composition. The polyurethane composition comprises a prepolymer of a polyisocyanate and a polyol, as well as a diol curing agent. The golf balls of the present invention have been found to provide desired playing characteristics such as durability and improved resilience.
BACKGROUND OF THE INVENTION
Polyurethane is the product of a reaction between a polyurethane prepolymer and a curing agent. The polyurethane prepolymer is a product formed by a reaction between a polyol and a diisocyanate. The curing agents used previously are typically diamines or glycols. A catalyst is often employed to promote the reaction between the curing agent and the polyurethane prepolymer.
Polyurethanes are typically divided into two categories: thermosets and thermoplastics. Thermoplastic polyurethanes are formed by the reaction of a prepolymer including a diisocyanate and a polyol, and a diol curing agent. Thermoset polyurethanes are formed by the reaction of a diisocyanate and polyol prepolymer which is cured with a polyamine or a tri- or tetra-functional glycol.
Various companies have investigated the usefulness of polyurethane in golf balls. The use of polyurethane materials in golf clubs and, in particular, club inserts, however, has been limited. For example, U.S. Pat. No. 5,575,472 discloses curable and/or thermoplastic and thermoset polymer resin inserts in the face of a golf club, and U.S. Pat. No. 5,316,298 discloses metal and/or rigid-plate inserts located in the back cavity of a golf club, but do not recognize the use of polyurethane insert materials.
There is a need, therefore, for golf club insert materials comprising polyurethanes to aid in creating the soft “feel” so desired by good golfers and needed by average golfers for forgiveness of off-center strikes of the golf ball. The present invention is directed to such polyurethane inserts that are useful for golf club inserts and, in particular, putter inserts.
SUMMARY OF THE INVENTION
The present invention is directed to an insert for a golf club, wherein the insert is formed of a polyurethane composition comprising a prepolymer comprised of a polyol and a polyisocyanate, and a curing agent; and wherein the polyisocyanate is selected from the group consisting of 4,4′-diphenylmethane diisocyanate, polymeric 4,4′-diphenylmethane diisocyanate, toluene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, p-phenylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and isophorone diisocyanate.
In one embodiment, the curing agent is a diol having the formula:
HOH
2
CH
2
C(OH
2
CH
2
C)
n
O—X—O(CH
2
CH
2
O)
m
CH
2
CH
2
OH
wherein n and m, each separately have a value of 0, 1, 2, or 3, and wherein X is o-phenylene, m-phenylene, p-phenylene, o-cyclohexyl, m-cyclohexyl, or p-cyclohexyl. Preferably, n and m each separately have a value of 1 or 2.
In another embodiment, the curing agent is a diol selected from the group consisting of 1,3-bis(2-hydroxyethoxy) benzene, 1,3-[bis-(2-hydroxyethoxy)]-diethoxy benzene, 1,4-butanediol, resorcinol-di-(&bgr;-hydroxyethyl) ether, hydroquinone-di-(&bgr;-hydroxyethyl) ether, ethylene glycol, diethylene glycol, polyethylene glycol, and mixtures thereof.
It is preferred that the golf club is a putter. In another preferred embodiment, the polyisocyanate is p-phenylene diisocyanate. The polyol can be selected from the group consisting of polytetramethylene ether glycol, poly(oxypropylene) glycol, polybutadiene glycol, polyethylene adipate glycol, polyethylene propylene adipate glycol, and polybutylene adipate glycol, o-phthalate-1,6-hexanediol polyester polyol, diethylene glycol initiated caprolactone, trimethylol propane initiated caprolactone, neopentyl glycol initiated caprolactone, 1,4-butanediol-initiated caprolactone, 1,6-hexanediol-initiated caprolactone, and mixtures thereof. In a preferred embodiment, the polyol is selected from the group consisting of polytetramethylene ether glycol, polyethylene adipate glycol, polybutylene adipate glycol, diethylene glycol initiated caprolactone, and mixtures thereof.
The polyol should be present in an amount of about 70 to 98 percent by weight of the prepolymer, the polyisocyanate is present in an amount of about 2 to 30 percent by weight of the prepolymer, and the diol curing agent is present in an amount of about 10 to 110 weight percent of the prepolymer. Preferably, the polyisocyanate is present in an amount of about 6 to 12 percent by weight of the prepolymer.
In one embodiment, the polyurethane composition further comprises at least one polyamine curing agent. In another preferred embodiment, the curing agent is a polyamine selected from the group consisting of isophrone diamine, dicyclohexylmethane diamine, isomers of 3,5-diethyltoluene-2,4 (2,6)-diamines, isomers of 3,5-dimethylthio-2,4 (2,6)-toluenediamines, 4,4′-bis-(sec-butylamino)-diphenylmethane, 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-is bis-(2-chloroaniline), 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline), trimethylene glycol-di-p-aminobenzoate, polytetramethyleneoxide-di-p-aminobenzoate, and mixtures thereof.
In a different embodiment, the polyamine curing agent has a formula:
H
2
NH
2
CH
2
C(OH
2
CH
2
C)
n
O—Y—O(CH
2
CH
2
O)
m
CH
2
CH
2
NH
2
wherein n and m, each separately have a value of 0, 1, 2, or 3, and wherein Y is o-phenylene, m-phenylene, p-phenylene, o-cyclohexyl, m-cyclohexyl, or p-cyclohexyl. In another embodiment, the polyurethane composition comprises a reaction product of p-phenylene diisocyanate, polytetramethylene ether glycol, and 3,5-dimethylthio-2,4 (2,6)-toluenediamine. Alternatively, the polyurethane composition further comprises a density-modifying filler.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
This invention is particularly directed towards golf balls having an intermediate layer, and/or a cover formed of a polyurethane composition comprising the reaction product of a prepolymer comprising at least one polyisocyanate and at least one polyol, and a curing agent of at least one diol curative, preferably a blend of diol curatives, wherein the resultant golf ball possesses improved resiliency and initial velocity. The invention is also directed towards the use of the polyurethane composition in producing golf-related equipment, such as in an insert for a golf club as well as in the golf balls discussed herein.
Golf balls formed according to the invention may have a one-piece construction formed from a homogeneous mass consisting entirely of the polyurethane composition of the invention. Such balls may further include, if desired, blends of conventional golf ball cover and/or intermediate layer materials, such as those discussed herein. One-piece balls, formed with the materials disclosed herein, are quite durable, but do not provide great distance because of relatively high spin and low velocity. A more preferred aspect of the present invention includes two-piece, multi-component, and wound balls having cores, liquid centers, intermediate layers, and/or covers comprising polyurethane blend of the type disclosed herein.
As used herein, the term “golf ball core” can be used to refer to any portion of a golf ball contained within the cover. In the case of a golf ball having three or more layers, the term “golf ball core” includes at least one inner layer and typically refers to a center and at least one intermediate layer. Such balls are known as “dual core” golf balls. The center may be solid, gel, hollow, or fluid filled. The term “inner core” may be used interchangeably with “center” or “golf ball center”, while the term “outer core” may be used interchangeably with “intermediate layer” or “at least one intermediate layer.” For example, one optional type of intermediate layer is a tensioned elastomeric material wound about the center. When a tensioned elastomeric material is inc
Rajagopalan Murali
Wu Shenshen
Acushnet Company
Gorr Rachel
LandOfFree
Polyurethane golf club inserts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyurethane golf club inserts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyurethane golf club inserts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3220119