Plant retroelements and methods related thereto

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S410000, C435S419000, C800S305000, C800S306000, C800S307000, C800S309000, C800S310000, C800S312000, C800S313000, C800S314000, C800S315000, C800S316000, C800S317000, C800S317100, C800S317200, C800S317300, C800S317400, C800S318000, C800S319000, C800S320000, C800S320100, C800S320200, C800S320300, C800S322000, C800S319000, C536S023100, C536S023720, C536S024100

Reexamination Certificate

active

06720479

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides plant retroelements and methods related to plant retroelements. The invention involves techniques from the fields of: molecular biology, virology, genetics, bioinformatics, and, to a lesser extent, other related fields.
BACKGROUND OF THE INVENTION
The eukaryotic retrotransposons are divided into two distinct classes of elements based on their structure: the long terminal repeat (LTR) retrotransposons and the LINE-like or non LTR elements. Doolittle et al. (1989) Quart. Rev. Biol. 64: 1-30; xiong and Eickbush (1990) EMBO J 9: 3353-3362. These element classes are related by the fact that each must undergo reverse transcription of an RNA intermediate to replicate, and each generally encodes its own reverse transcriptase. The LTR retrotransposons replicate by a mechanism which resembles that of the retroviruses. Boeke and Sandmeyer, (1991) Yeast transposable elements. In The Molecular and Cellular Biology of the Yeast Saccharomyces, edited by J. Broach, E. Jones and J. Pringle, pp. 193-261. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. They typically use a specific tRNA to prime reverse transcription, and a linear cDNA is synthesized through a series of template transfers that require redundant LTR sequences at each end of the element mRNA. This all occurs within a virus-like particle formed from proteins encoded by the retrotransposon mRNA. After reverse transcription, an integration complex is organized that directs the resulting cDNA to a new site in the genome of the host cell.
Phylogenetic analyses based on reverse transcriptase amino acid sequences resolve the LTR retrotransposons into two families: the Ty3/gypsy retrotransposons (Metaviridae), and the Ty1/copia elements (Pseudoviridae). Boeke et al., (1998) Metaviridae. In Virus Taxonomy: ICTV VIIth Report, edited by F. A. Murphy. Springer-Verlag, N.Y.; Boeke et al. (1998) Pseudoviridae. In Virus Taxonomy: ICTV VIIth Report, edited by F. A. Murphy. Springer Verlag, N.Y.; Xiong and Eickbush (1990) EMBO J. 9: 3353-3362. Although distinct, Ty3/gypsy elements are more closely related to the retroviruses than to the Ty1/copia elements. They also share a similar genetic organization with the retroviruses, principally in the order of integrase and reverse transcriptase in their pol genes. For the Ty3/gypsy elements, reverse transcriptase precedes integrase, and this order is reversed for the Ty1/copia elements. In addition, some Ty3/gypsy elements have an extra open reading frame (ORF) similar to retroviral envelope (env) proteins, which is required for viral infectivity. The Drosophila melanogaster gypsy retrotransposons encode an env-like ORF and can be transmitted between cells. Kim et al. (1994) Proc. Natl. Acad. Sci. USA 91: 1285-1289; Song et al. (1994) Genes & Dev. 8: 2046-2057. Thus there are two distinct lineages of infectious LTR retroelements, the retroviruses and those Ty3/gypsy retrotransposons that encode envelope-like proteins. The Ty3/gypsy elements have been divided into two genera, the metaviruses and the errantiviruses, the latter of which include all elements with env-like genes. Boeke et al., (1998) Metaviridae. In Virus Taxonomy: ICTV VlIth Report, edited by F. A. Murphy. Springer-Verlag, N.Y.
In plants, retrotransposons have been extremely successful. Bennetzen (1996) Trends Microbiol. 4: 347-353; Voytas (1996) Genetics 142: 569-578. The enormous size of many plant genomes demonstrates a great tolerance for repetitive DNA, a substantial proportion of which appears to be composed of retrotransposons. Because of their abundance, retrotransposons have undoubtedly influenced plant gene evolution. They can cause mutations in coding sequences (Grandbastien et al. (1989) Nature 337: 376-380; Hirochika et al. (1996) Proc. Natl. Acad. Sci. USA 93: 7783-7788; Purugganan and Wessler (1994) Proc. Natl. Acad. Sci. USA 91: 11674-11678), and the promoter regions of some plant genes contain relics of retrotransposon insertions that contribute transcriptional regulatory sequences. White et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11792-11796. Retrotransposons also generate gene duplications: Repetitive retrotransposon sequences provide substrates for unequal crossing over, and such an event is thought to have caused a zein gene duplication in maize. White et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11792-11796. Occasionally, cellular mRNAs are reverse transcribed and the resultant cDNA recombines into the genome giving rise to new genes, or more frequently, cDNA pseudogenes. Maestre et al. (1995) EMBO J. 14: 6333-6338. The transduction of gene sequences during reverse transcription, which produced the oncogenic retroviruses, has also been documented to occur for a plant retrotransposon (Bureau et al. (1994) Cell 77: 479-480; Jin and Bennetzen (1994) Plant Cell 6: 1177 1186); a maize Bsl insertion in Adhl carries part of an ATPase gene and is the only known example of a retrotransposon-mediated gene transduction event.
Plant genomes encode representatives of the two major lineages of LTR retrotransposons that have been identified in other eukaryotes. Among these are numerous examples of Ty 1/copia elements (e.g. Konieczny et al. (1991) Genetics 127: 801-809; Voytas and Ausubel (1988) Nature 336: 242-244; Voytas et al. (1990) Genetics 126: 713-721) Also prevalent are Ty3/gypsy elements, which are members of the genus Metaviridae (Smyth et al. 1989; Purugganan and Wessler 1994 Proc. Natl. Acad. Sci. USA 91: 11674-11678; Su and Brown 1997). As stated above, the metaviruses do not encode an envelope protein characteristic of the retroviruses. It has been suggested that some plant retrovirus-like elements may have lost, or not yet gained, genes such as the envelope gene required for cell-to-cell transmission (Bennetzen (1996) Trends Microbiol. 4: 347-353). As one group of researchers described the uncertainty, “[s]ince genes encoding ENV [envelope] functions are very heterogeneous at the sequence level and difficult to identify by homology even between retroviruses, the possibility cannot be completely excluded at the present time that the 3′ ORF of Cyclops [the retrotransposon described in the paper] is, in fact, an env gene and, hence, Cyclops is a retrovirus or a descendant of one.” Chavanne et al. (1998) Plant Molecular Biol 37: 363-375.
Citation of the above documents is not intended as an admission that any of the foregoing is pertinent prior art. All statements as to the date or representation as to the contents of these documents is based on subjective characterization of information available to the applicant, and does not constitute any admission as to the accuracy of the dates or contents of these documents.
SUMMARY OF THE INVENTION
In general, the present invention provides materials, such as nucleic acids, vectors, cells, and plants (including plant parts, seeds, embryos, etc.), and methods to manipulate the materials. In particular, molecular tools are provided in the form of retroelements and retroelement-containing vectors, cells and plants. The particular methods include methods to introduce the retroelements into cells, especially wherein the retroelements carries at least one agronomically-significant characteristic. The best mode of the present invention is a particular method to transfer agronomically-significant characteristics to plants wherein a helper cell line which expresses gag, pol and env sequences is used to enable transfer of a secondary construct which carries an agronomically-significant characteristic and has retroelement sequences that allow for replication and integration.
In one embodiment, there are provided isolated nucleic acid molecules, wherein said nucleic acid molecules encode at least a portion of a plant retroelement and comprises a nucleic acid sequence selected from the group consisting of:
(a) a nucleic acid sequence which is a plant retroelement primer binding site and which has more than 95% identity to SEQ ID NO 2, wherein said identity can be determined using the DNAsis comput

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plant retroelements and methods related thereto does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plant retroelements and methods related thereto, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant retroelements and methods related thereto will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3215811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.