Selective iGluR5 receptor antagonists for the treatment of...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S147000

Reexamination Certificate

active

06759418

ABSTRACT:

BACKGROUND OF THE INVENTION
In the mammalian central nervous system (CNS), the transmission of nerve impulses is controlled by the interaction between a neurotransmitter, that is released by a sending neuron, and a surface receptor on a receiving neuron, which causes excitation of this receiving neuron. L-Glutamate, which is the most abundant neurotransmitter in the CNS, mediates the major excitatory pathways in mammals, and is referred to as an excitatory amino acid (EAA). The receptors that respond to glutamate are called excitatory amino acid receptors (EAA receptors). See Watkins & Evans,
Ann. Rev. Pharmacol. Toxicol.,
21, 165 (1981); Monaghan, Bridges, and Cotman,
Ann. Rev. Pharmacol. Toxicol.,
29, 365 (1989); Watkins, Krogsgaard-Larsen, and Honore,
Trans. Pharm. Sci.,
11, 25 (1990). The excitatory amino acids are of great physiological importance, playing a role in a variety of physiological processes, such as long-term potentiation (learning and memory), the development of synaptic plasticity, motor control, respiration, cardiovascular regulation, and sensory perception.
Excitatory amino acid receptors are classified into two general types. Receptors that are directly coupled to the opening of cation channels in the cell membrane of the neurons are termed “ionotropic.” This type of receptor has been subdivided into at least three subtypes, which are defined by the depolarizing actions of the selective agonists N-methyl-D-aspartate (NMDA), &agr;-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA). Molecular biological studies have established that AMPA receptors are composed of subunits (GluR
1
-GluR
4
), which can assemble to form functional ion channels. Five kainate receptors have been identified which are classified as either High Affinity (KA1 and KA2) or Low Affinity (GluR
5
, GluR
6
, and GluR
7
). Bleakman et al.,
Molecular Pharmacology,
49, No.4, 581,(1996).
The second general type of receptor is the G-protein or second messenger-linked “metabotropic” excitatory amino acid receptor. This second type is coupled to multiple second messenger systems that lead to enhanced phosphoinositide hydrolysis, activation of phospholipase D, increases or decreases in cAMP formation, and changes in ion channel function. Schoepp and Conn,
Trends in Pharmacol. Sci.,
14, 13 (1993). Both types of receptors appear not only to mediate normal synaptic transmission along excitatory pathways, but also to participate in the modification of synaptic connections during development and throughout life. Schoepp, Bockaert, and Sladeczek,
Trends in Pharmacol. Sci.,
11, 508 (1990); McDonald and Johnson,
Brain Research Reviews,
15, 41 (1990).
The excessive or inappropriate stimulation of excitatory amino acid receptors leads to neuronal cell damage or loss by way of a mechanism known as excitotoxicity. This process has been suggested to mediate neuronal degeneration in a variety of neurological disorders and conditions. The medical consequences of such neuronal degeneration makes the abatement of these degenerative neurological processes an important therapeutic goal.
Excitatory amino acid excitotoxicity has been implicated in the pathophysiology of numerous neurological disorders. For example, excitotoxicity has been linked with the etiology of cerebral deficits subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal cord lesions resulting from trauma or inflammation, perinatal hypoxia, cardiac arrest, and hypoglycemic neuronal damage. In addition, excitotoxicity has been implicated in chronic neurodegenerative conditions including Alzheimer's Disease, Huntington's Chorea, inherited ataxias, AIDS-induced dementia, amyotrophic lateral sclerosis, idiopathic and drug-induced Parkinson's Disease, as well as ocular damage and retinopathy. Other neurological disorders implicated with excitotoxicity and/or glutamate dysfunction include muscular spasticity including tremors, drug tolerance and withdrawal, brain edema, convulsive disorders including epilepsy, depression, anxiety and anxiety related disorders such as post-traumatic stress syndrome, tardive dyskinesia, and psychosis related to depression, schizophrenia, bipolar disorder, mania, and drug intoxication or addiction. In addition, it has also been reported that excitatory amino acid excitotoxicity participates in the etiology of acute and chronic pain states including severe pain, intractable pain, neuropathic pain, and post-traumatic pain.
The use of a neuroprotective agent, such as an excitatory amino acid receptor antagonist, is believed to be useful in treating or preventing these disorders and/or reducing the amount of neurological damage associated with these disorders. Excitatory amino acid receptor antagonists may also be useful as analgesic agents.
Early theories regarding the pathophysiology of migraine have been dominated since 1938 by the work of Graham and Wolff (
Arch. Neurol. Psychiatry,
39, 737-63 (1938)). They proposed that the cause of migraine headache is vasodilatation of extracranial vessels. This view is supported by knowledge that ergot alkaloids and sumatriptan contract cephalic vascular smooth muscle and are effective in the treatment of migraine. Sumatriptan is a hydrophilic agonist at the serotonin 5-HT-1-like receptors and does not cross the blood-brain barrier (Humphrey, et al.,
Ann. NY Acad. Sci.,
600, 587-600 (1990)). Consequently, several series of compounds said to be useful for the treatment of migraine, have been developed to optimize the 5-HT
1
-like mediated vasoconstrictive activity of sumatriptan. However, sumatriptan's contraindications, including coronary vasospasm, hypertension, and angina are also products of its vasoconstrictive activity (MacIntyre, P. D., et al.,
British Journal of Clinical Pharmacology,
34, 541-546 (1992); Chester, A. H., et al.,
Cardiovascular Research,
24, 932-937 (1990); Conner, H. E., et al.,
European Journal of Pharmacology,
161, 91-94 (1990)).
While the vascular mechanism for migraine has gained wide acceptance, there is not total agreement as to its validity. Moskowitz, for example, has shown the occurrence of migraine headaches, independent of changes in vessel diameter (
Cephalalgia,
12, 5-7, (1992)). It is known that the trigeminal ganglion, and its associated nerve pathways, are associated with painful sensations from the face such as headache, in particular migraine. Moskowitz proposed that unknown triggers stimulate the trigeminal ganglia which innervate vasculature within cephalic tissue, giving rise to the release of vasoactive neuropeptides from axons innervating the vasculature. These neuropeptides initiate a series of events leading to neurogenic inflammation of the meninges, a consequence of which is pain. This neurogenic inflammation is blocked by sumatriptan at doses similar to those required to treat acute migraine in humans. However, such doses of sumatriptan, as stated, are associated with contraindications as a result of sumatriptan's attendant vasoconstrictive properties.(see supra.)
5-HT
1D
receptors have been implicated as mediating the blockade of neurogenic protein extravasation. (
Neurology,
43(suppl. 3), S16-S20 (1993)). In addition, it has been reported that &agr;
2
, H
3
, m-opioid and somatostatin receptors may also be located on trigeminovascular fibers and may block neurogenic plasma extravasation (Matsubara et al.,
Eur. J. Pharmacol.,
224, 145-150 (1992)). Weinshank et al. have reported that sumatriptan and several ergot alkaloids have a high affinity for the serotonin 5-HT
1F
receptor, suggesting a role for the 5-HT
1F
receptor in migraine (WO93/14201).
European Patent Application Publication No. 590789A1 and U.S. Pat. Nos. 5,446,051 and 5,670,516 disclose that certain decahydroisoquinoline derivative compounds are AMPA receptor antagonists and, as such, are useful in the treatment of many different conditions, including pain and migraine headache.
Recently, it has been reported that all five members of the kainate subtype, of ionot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selective iGluR5 receptor antagonists for the treatment of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selective iGluR5 receptor antagonists for the treatment of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selective iGluR5 receptor antagonists for the treatment of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3215585

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.