System and method for detecting and correcting phase error...

Telecommunications – Transmitter – Noise or interference elimination

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S110000, C455S115100, C375S298000

Reexamination Certificate

active

06674998

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to modulation techniques, and more particularly to phase error detection and correction of phase error between differential signals, such as in-phase and quadrature phase carrier signals of a quadrature oscillator.
DESCRIPTION OF RELATED ART
Many small networks are commonly connected through a set of wires. Wired networks provide a certain level of convenience but have many limitations such as various cable management and convenience issues. For various reasons, wireless LAN (WLAN) technology is becoming more popular. Radio frequency (RF) appears to be the technology of choice for establishing a viable WLAN. The typical environment for wireless communications, however, is very noisy and not optimal for communications. For example, most homes and workplaces include many electronic devices resulting in an electronically noisy environment that may interfere with WLAN communications, such as microwave ovens, garage door openers, radios, television sets, computer systems, etc. Further, the communication medium between wireless devices is dynamic and constantly changes. For example, most environments or rooms include multiple reflective services, creating multipath noise. Movement of items or devices or the like such as hands, bodies, jewelry, mouse pointers, etc., or activation of electronic devices, such as cooling fans or the like, affects the overall wireless communication path and potentially degrades wireless communication performance. In summary, wireless communications must be made through a dynamic and unpredictable medium.
In spite of the limitations of the wireless medium, consumers are demanding high-speed wireless applications and relatively high quality of service (QOS) applications. Such applications include media streams, which further include any combination of video and audio information and other data. Because of the dynamic and unpredictable environment through which wireless communications must be made, wireless communications are generally less robust and less reliable than corresponding wired communications. Also, A significant amount of overhead is required for successful wireless communications. For example, frames or packets of information submitted through the wireless media typically include a known preamble to enable the receiving device to measure the noise and distortion effects of the wireless medium. Collision detection techniques, such as commonly used in Ethernet wired environments, are not particularly useful in wireless communications since a transceiver is unable to receive a signal while transmitting. Therefore, many rules and timing constraints must be followed for wireless devices to communicate with each other in half duplex mode.
It is imperative that wireless transceivers utilize the wireless medium in the most efficient manner possible to maximize data throughput and to meet bandwidth requirements. In one technique, information is encoded onto an RF carrier by modulating the amplitude and phase angle. The phase modulation/demodulation is achieved by using pairs of mixers driven by quadrature local oscillator (LO) signals. The two phases of the local oscillator, designated I (in-phase) and Q (quadrature phase), are at the same frequency, but the Q phase is delayed one quarter cycle or period (90 degrees) with respect to the I phase carrier signal. The amount of data that can be transmitted at a given carrier frequency is proportional to the accuracy of the I/Q phase relationship.
In an exemplary embodiment, the two local oscillator phases are derived from a single voltage controlled oscillator (VCO) to obtain coherency. However, imperfections in the quadrature generation and/or distribution circuits typically cause quadrature phase errors. In order to obtain high data transmission rates, the I/Q phase relationship must not deviate from 90 degrees by more than few degrees. This has proven difficult to achieve in typical wireless transceiver configurations. For example, with a local oscillator frequency of 2.5 gigahertz (GHz), a timing error of 1.1 picoseconds (ps) is equivalent to one degree of phase error. Within the transceiver circuitry, a mismatch in parasitic capacitance of 11 fempto Farads (fF) across a 100-ohm resister can generate a one-degree phase error. An f
t
mismatch (where “t” is shown as Greek tau symbol or “&tgr;” in the Figures) of a bipolar junction transistor (BJT) of ten percent may also generate about one degree phase error at RF. A local oscillator chain of one or more buffer stages may cause accumulated timing errors between I and Q that may exceed several degrees.
It is desired to detect and reduce or otherwise eliminate phase errors between differential signals, such as the I/Q carrier signals of a quadrature oscillator. The reduction in phase error increases the amount of data that can be transmitted in accordance with the RF quadrature modulating technique.
SUMMARY OF THE INVENTION
A phase error detector according to an embodiment of the present invention may be used to detect and correct any phase error between positive and negative polarities of first and second differential signals. The first and second differential signals may be, for example, the carrier signals of a quadrature generator. The quadrature generator provides positive and negative in-phase (I) carrier signals and positive and negative quadrature phase (Q) carrier signals and receives a phase error signal. The quadrature oscillator attempts to maintain the I and Q carrier signals at a one-quarter period phase differential with respect to each other based on the phase error signal. It is appreciated, however, that phase error detectors according to embodiments of the present invention may be employed for other types of circuits and applications, such as phase-locked loop (PLLs), voltage controlled oscillators (VCOs), etc.
The phase error detector includes a summing network and first and second mixer circuits. The summing network develops four sum signals by summing the positive polarity signal of the first differential signal with the positive polarity signal of the second differential signal, the negative polarity signal of the first differential signal with the negative polarity signal of the second differential signal, the positive polarity signal of the first differential signal with the negative polarity signal of the second differential signal, and the negative polarity signal of the first differential signal with the positive polarity signal of the second differential signal. The first mixer circuit develops a first polarity signal of the phase error signal based on the first and second sum signals, and the second mixer circuit develops a second polarity signal of the phase error signal based on the third and fourth sum signals. The resulting phase error signal is the differential of the first and second polarity signals.
In one embodiment, the summing network removes DC from the first, second, third and fourth sum signals. The first mixer circuit is responsive to the positive portion of the first and third sum signals and develops the first polarity signal of the phase error signal as a combined signal. Likewise, the second mixer circuit is responsive to the positive portion of the second and fourth sum signals and develops the second polarity signal of the phase error signal as a combined signal. In a particular embodiment, for example, the sum signals are pulsed voltage signals that activate transistor switches. The transistors draw averaged and combined current signals through a bias resistor to develop a phase error polarity signal.
In another embodiment, the summing network comprises an impedance bridge network. In a more specific embodiment, the impedance bridge network is a capacitive bridge network that includes first, second, third and fourth capacitive legs coupled together at first, second, third and fourth primary junctions. The positive polarity signal of the first differential signal is received at the first primary junction coupling the first and fourth capacitive legs. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for detecting and correcting phase error... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for detecting and correcting phase error..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for detecting and correcting phase error... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211769

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.