Optical sensor device having creep-resistant optical fiber...

Optical waveguides – Optical waveguide sensor – Including physical deformation or movement of waveguide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S037000

Reexamination Certificate

active

06768825

ABSTRACT:

TECHNICAL FIELD
This invention relates to optical pressure sensing and, more particularly, to optical pressure sensing based on Bragg gratings imparted in an optical fiber.
BACKGROUND ART
In the extraction of oil from earth borehole, the naturally existing pressure within an earth formation is often used as the driving force for oil extraction. The oil may be extracted from a single location or from multiple locations within the well. In either case, it is desirable to know the fluid pressure with the well at one or more locations to aid the well operator in maximizing the depletion of the oil within the earth formation.
It is known to install pressure and temperature sensors with some electrical submersible pumps (ESPs) to provide the operator on the surface with information about the pump's performance. It is also known to use optical sensors for the measurement of wellbore conditions such as downhole wellbore pressures and temperatures.
FIG. 1
illustrates such an environment. As shown in
FIG. 1
, the pressure sensor can be mounted to the casing of an electrically submersible pump. A light source in an optical module is used to feed optical signals to the pressure sensor through the optical fiber assembly. The signal indicative of the pressure at the sensing location provided by the pressure sensor is conveyed back to the optical module for processing. For pressure sensing at multiple locations within the wellbore, multiple pressure sensors may be serially multiplexed for distributed pressure sensing using wavelength division multiplexing (WDM) and/or time division multiplexing (TDM) techniques.
Sensors for the measurement of various physical parameters such as pressure and temperature often rely on the transmission of strain from an elastic structure (e.g., a diaphragm, bellows, etc.) to a sensing element. In a pressure sensor, the sensing element may be bonded to the elastic structure with a suitable adhesive.
It is also known that the attachment of the sensing element to the elastic structure can be a large source of error if the attachment is not highly stable. In the case of sensors, which measure static or very slowly changing parameters, the long-term stability of the attachment to the structure is extremely important. A major source of such long term sensor instability is a phenomenon known as “creep”, i.e., change in strain on the sensing element with no change in applied load on the elastic structure, which results in a DC shift or drift error in the sensor signal.
Certain types of fiber optic sensors for measuring static and/or quasi-static parameters require a highly stable, very low creep attachment of the optical fiber to the elastic structure. One example of a fiber optic based sensor is that described in U.S. Pat. No. 6,016,702 entitled “High Sensitivity Fiber Optic Pressure Sensor for Use in Harsh Environments”, issued to Robert J. Maron, which is incorporated herein by reference in its entirety. In that case, an optical fiber is attached in tension to a compressible bellows at one location along the fiber and to a rigid structure (or housing) at a second location along the fiber with a Bragg grating embedded within the fiber between these two fiber attachment locations. As the bellows is compressed due to an external pressure change, the strain on the fiber grating changes, which changes the wavelength of light reflected by the grating. If the attachment of the fiber to the structure is not stable, the fiber may move (or creep) relative to the structure it is attached to, and the aforementioned measurement inaccuracies occur.
One common technique for attaching the optical fiber to a structure is epoxy adhesives. It is common to restrict the use of epoxy adhesives to temperatures below the glass transition temperature of the epoxy. Above the glass transition temperature, the epoxy transitions to a soft state in which creep becomes significant and, thus, the epoxy becomes unusable for attachment of a sensing element in a precision transducer. Also, even below the glass transition temperature significant creep may occur.
Another technique is to solder the structure to a metal-coated fiber. However, it is known that solders are susceptible to creep under certain conditions. In particular, some soft solders, such as common lead-tin (PbSn) solder, have a relatively low melting point temperature and are thus relatively unsuitable for use in transducers that are used at elevated temperatures and/or at high levels of stress in the solder attachment. The use of “hard” solders with higher melting temperatures, such as gold-germanium (AuGe) and gold-silicon (AuSi), can reduce the problem; however, at elevated temperatures and/or high stress at the solder attachment, these hard solders also exhibit creep. In addition, the high melting temperature of such solders may damage the metal coating and/or damage the bond between the metal coating and glass fiber.
It is advantageous and desirable to provide a reliable method and system for accurately measuring the pressure at one or more locations in an environment, wherein the pressure sensor is comprised of a mechanism to prevent long term sensor instability due to changes in strain on the sensing elements.
SUMMARY OF THE INVENTION
The first aspect of the present invention is a pressure sensor, responsive to an optical signal, for providing a sensor signal indicative of pressure in an environment. The pressure sensor comprises an optical waveguide having a longitudinal axis, a first mounting location and a second mounting location separated by a separation distance along the longitudinal axis which propagates the optical sensor signal, wherein the waveguide comprises a core and a cladding disposed outside the core, and wherein the cladding has an outside diameter and includes a first and a second variation region each having a modified outside diameter different from the outside diameter, wherein the first and second variation regions are respectively located at the first mounting location and the second mounting location, wherein a Bragg grating is imparted in the waveguide between the first mounting location and the second mounting location which provides the optical sensor signal having a spectral profile centered at a characteristic wavelength along said waveguide, wherein a first attachment mechanism is disposed against at least one portion of the first variation region which prevents relative movement between the first variation region and the first attachment mechanism, wherein a second attachment mechanism is disposed against at least one portion of the second variation region which prevents relative movement between the second variation region and the second attachment mechanism, and wherein a mounting device has a first end which mounts to the first attachment mechanism and a second end which mounts to the second attachment mechanism which defines a separation length between the first and second attachment mechanisms along the longitudinal axis of the waveguide and allowing the separation length to vary according to the pressure of the environment, thereby causing a change in the separation and the characteristic wavelength.
According to the present invention, the first attachment mechanism comprises a first ferrule including a front portion having a profile substantially corresponding to the modified outside diameter of the first variation region of the cladding, and a first butting mechanism butting the first ferrule against the waveguide which presses the front portion of the first ferrule onto at least one portion of the first variation region at the first mounting location and which limits relative movement between the first ferrule and the first variation region of the cladding, wherein the second attachment mechanism comprises a second ferrule including a front portion having a profile substantially corresponding to the modified outside diameter of the second variation region of the cladding, and wherein a second butting mechanism butts the second ferrule against the waveguide to press the front porti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical sensor device having creep-resistant optical fiber... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical sensor device having creep-resistant optical fiber..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical sensor device having creep-resistant optical fiber... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.