Simultaneous stimulation and concentration of cells

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S372300, C436S526000

Reexamination Certificate

active

06797514

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to methods for stimulating cells, and more particularly, to methods to concentrate and stimulate cells that maximizes stimulation of such cells. The present invention also relates to compositions of cells, including stimulated T-cells having specific phenotypic characteristics.
BACKGROUND OF THE INVENTION
Many cells are activated or regulated via receptors embedded in lipid rafts found in cell surface membranes. See K. Simons and D. Toomre,
Nature Rev.
1:31, 2000. Lipid rafts form concentrating platforms for individual receptors that are activated by ligand binding. Lipid rafts are involved in cellular signaling processes, including immunoglobulin E signaling during the allergic immune response, glial-cell-derived neurotrophic factor signaling important for the development and maintenance of the nervous system, Ras signaling, central to many signal transduction processes, and T-cell antigen receptor (TCR) signaling.
The T-cell antigen receptor (TCR) is a multisubunit immune recognition receptor that associates with the CD3 complex and binds to peptides presented by the major histocompatibility complex (MHC) class I and II proteins on the surface of antigen-presenting cells (APCs). Binding of TCR to the antigenic peptide on the APC is the central event in T-cell activation, which occurs at an immunological synapse at the point of contact between the T-cell and the APC. Moreover, data suggest that clustering of lipid rafts is essential to the formation of the immunological synapse. Krawczyk et al.,
Immunity
13(4):463-73, 2000.
To sustain T-cell activation, T lymphocytes typically require a second co-stimulatory signal. Co-stimulation is typically necessary for a T helper cell to produce sufficient cytokine levels that induce clonal expansion. Bretscher,
Immunol. Today
13:74, 1992; June et al.,
Immunol. Today
15:321, 1994. The major co-stimulatory signal occurs when a member of the B7 family ligands (CD80 (B7.1) or CD86 (B7.2)) on an activated antigen-presenting cell (APC) binds to CD28 on a T-cell.
Methods of stimulating the expansion of certain subsets of T-cells have the potential to generate a variety of T-cell compositions useful in immunotherapy. Successful immunotherapy can be aided by increasing the reactivity and quantity of T-cells by efficient stimulation.
The various techniques available for expanding human T-cells have relied primarily on the use of accessory cells and/or exogenous growth factors, such as interleukin-2 (IL-2). IL-2 has been used together with an anti-CD3 antibody to stimulate T-cell proliferation, predominantly expanding the CD8
+
subpopulation of T-cells. Both APC signals are thought to be required for optimal T-cell activation, expansion, and long-term survival of the T-cells upon re-infusion. The requirement for MHC-matched APCs as accessory cells presents a significant problem for long-term culture systems because APCs are relatively short-lived. Therefore, in a long-term culture system, APCs must be continually obtained from a source and replenished. The necessity for a renewable supply of accessory cells is problematic for treatment of immunodeficiencies in which accessory cells are affected. In addition, when treating viral infection, if accessory cells carry the virus, the cells may contaminate the entire T-cell population during long-term culture.
In the absence of exogenous growth factors or accessory cells, a co-stimulatory signal may be delivered to a T-cell population, for example, by exposing the cells to a CD3 ligand and a CD28 ligand attached to a solid phase surface, such as a bead. See C. June, et al. (U.S. Pat. No. 5,858,358); C. June et al. WO 99/953823. While these methods are capable of achieving therapeutically useful T-cell populations, increased robustness and ease of T-cell preparation remain less than ideal.
In addition, the methods currently available in the art have not focused on short-term expansion of T-cells or obtaining a more robust population of T-cells and the beneficial results thereof and/or the expansion of particular T-cell subclasses/phenotypes. Furthermore, the applicability of expanded T-cells has been limited to only a few disease states. For maximum in vivo effectiveness, theoretically, an ex vivo- or in vivo-generated, activated T-cell population should be in a state that can maximally orchestrate an immune response to cancer, infectious disease, or other disease states. The present invention provides methods to generate an increased number of more highly activated and more pure T-cells that have surface receptor and cytokine production characteristics that appear more healthy and natural than other expansion methods.
In addition, the present invention provides compositions of phenotypically tailored cell populations of any target cell, including T-cell populations and parameters for producing the same, as well as providing other related advantages.
SUMMARY OF THE INVENTION
The present invention generally provides methods for stimulating cells, and more particularly, provides a novel method to concentrate and stimulate cells that maximizes stimulation of such cells. In one aspect the present invention provides methods for stimulating a population of T-cells by simultaneous T-cell concentration and cell surface moiety ligation that comprises providing a population of cells wherein at least a portion thereof comprises T-cells, contacting the population of cells with a surface, wherein the surface has attached thereto one or more agents that ligate a cell surface moiety of at least a portion of the T-cells and stimulates at least that portion of T-cells or a subpopulation thereof and applying a force that predominantly drives T-cell concentration and T-cell surface moiety ligation, thereby inducing T-cell stimulation.
In one embodiment of the methods the surface has attached thereto a first agent that ligates a first cell surface moiety of a T-cell; and the same or a second surface has attached thereto a second agent that ligates a second moiety of said T-cell, wherein said ligation by the first and second agent induces proliferation of said T-cell. In related embodiments the surface may be biocompatible, natural or synthetic, comprise a polymer, comprise collagen, purified proteins, purified peptides, polysaccharides, glycosaminoglycans, or extracellular matrix compositions. In certain embodiments, the polysaccharides are selected from chitosan, alginate, dextran, hyaluronic acid, and cellulose and the polymer is selected from polystyrene, polyesters, polyethers, polyanhydrides, polyalkylcyanoacrylates, polyacrylamides, polyorthoesters, polyphosphazenes, polyvinylacetates, block copolymers, polypropylene, polytetrafluoroethylene (PTFE), or polyurethanes. In yet other embodiments, the polymer may comprise lactic acid or a copolymer. While in still yet other embodiments, the polymer may be a copolymer. Such copolymers can be a variety of known copolymers and may include lactic acid and/or glycolic acid (PLGA).
With respect to biocompatible surfaces, such surfaces may be biodegradable or non-biodegradable. In related embodiments, while not limited thereto, the non-biodegradable surfaces may comprise poly(dimethysiloxane) and/or poly(ethylene-vinyl acetate). Further, the biocompatible surface, while not limited thereto, may include collagen, metal, hydroxyapatite, glass, aluminate, bioceramic materials, hyaluronic acid polymers, alginate, acrylic ester polymer, lactic acid polymer, glycolic acid polymer, lactic acid/glycolic acid polymer, purified proteins, purified peptides, and/or extracellular matrix compositions.
In still yet further embodiments, the biocompatible surface is associated with an implantable device. The implantable device may be any that is desired to be used and may include a stent, a catheter, a fiber, a hollow fiber, a patch, or a suture. In related embodiments the surface may be glass, silica, silicon, collagen, hydroxyapatite, hydrogels, PTFE, polypropylene, polystyrene, nylon, or polyacrylamide. Yet additional embodi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Simultaneous stimulation and concentration of cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Simultaneous stimulation and concentration of cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simultaneous stimulation and concentration of cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.