Hemofiltration systems, methods and devices used to treat...

Chemical apparatus and process disinfecting – deodorizing – preser – Blood treating device for transfusible blood

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S004010, C604S005010, C604S005040, C604S006090, C604S006110, C210S650000, C210S195200, C210S260000, C210S790000

Reexamination Certificate

active

06730266

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to systems, methods, and devices used for hemofiltration. More specifically, the present invention relates to novel systems, methods, and devices for hemofiltration for inflammatory mediator-related diseases (IMRD), which include systemic inflammatory response syndrome (“SIRS”), multiorgan system dysfunction syndrome (“MODS”), and multiorgan system failure (“MOSF”) (collectively “SIRS/MODS/MOSF”).
BACKGROUND
Patients with life threatening illness are cared for in hospitals in the intensive care unit (“ICU”). These patients may be seriously injured from automobile accidents, etc., have had major surgery, have suffered a heart attack, or may be under treatment for serious infection, cancer, or other major disease. While medical care for these primary conditions is sophisticated and usually effective, a significant number of patients in the ICU will not die of their primary disease. Rather, a significant number of patients in the ICU die from a secondary complication known commonly as “sepsis” or “septic shock”. Once again, the proper medical terms for sepsis and septic shock are systemic inflammatory response syndrome (“SIRS”), multiorgan system dysfunction syndrome (“MODS”), and multiorgan system failure (“MOSF”) (collectively “SIRS/MODS/MOSF”).
In short, medical illness, trauma, complication of surgery, and, for that matter, any human disease state, if sufficiently injurious to the patient, may elicit SIRS/MODS/MOSF. The systemic inflammatory response within certain physiologic limits is beneficial. As part of the immune system, the systemic inflammatory response promotes the removal of dead tissue, healing of injured tissue, detection and destruction of cancerous cells as they form, and mobilization of host defenses to resist or to combat infection. If the stimulus to the systemic inflammatory response is too potent, such as massive tissue injury or major microbial infection, however, then the systemic inflammatory response may cause symptoms which include fever, increased heart rate, and increased respiratory rate. This symptomatic response constitutes systemic inflammatory response syndrome (“SIRS”). If the inflammatory response is excessive, then injury or destruction to vital organ tissue may result in vital organ dysfunction, which is manifested in many ways, including a drop in blood pressure, deterioration in lung function, reduced kidney function, and other vital organ malfunction. This condition is known as multiorgan dysfunction syndrome (“MODS”). With very severe or life threatening injury or infection, the inflammatory response is extreme and can cause extensive tissue damage with vital organ damage and failure. These patients will usually die promptly without the use of ventilators to maintain lung ventilation, drugs to maintain blood pressure and strengthen the heart, and, in certain circumstances, artificial support for the liver, kidneys, coagulation, brain and other vital systems. This condition is known as multiorgan system failure syndrome (“MOSF”). These support measures partially compensate for damaged and failed organs, they do not cure the injury or infection or control the extreme inflammatory response which causes vital organ failures.
In the United States of America each year, SIRS/MODS/MOSF afflicts approximately 400,000-600,000 patients and results in about 150,000 deaths. Overall, depending on the number of organ systems failing, the mortality rate of MOSF ranges generally from 40 to 100%. For instance, if three (3) or more vital organs fail, death results in more the 90% of cases. SIRS/MODS/MOSF is the most common cause of death in intensive care units and is the thirteenth most common cause of death in the United States of America. SIRS/MODS/MOSF costs about $5 to $10 billion yearly for supportive care. In addition, the incidence of SIRS/MODS/MOSF is on the rise; reported cases increased about 139% between 1979 and 1987. This increase is due to an aging population, increased utilization of invasive medical procedures, immuno suppressive therapies (e.g. cancer chemotherapy) and transplantation procedures. (
Morbidity and Mortality Weekly Report
1990;
Detailed Diagnoses and Procedures, National Hospital Discharge Survey,
1993, from CDC/National Center for Health Statistics, October/95.)
The detrimental mechanism of SIRS/MODS/MOSF is the excessive activation of the inflammatory response. The inflammatory response consists of the interaction of various cell systems (e.g., monocyte/macrophage, neutrophil, and lymphocytes) and various humoral systems (e.g., cytokine, coagulation, complement, and kallikrein/kinin). Each component of each system may function as an effector (e.g., killing pathogens, destroying tissue, etc.), a signal (e.g., most cytokines), or both. Humoral elements of the inflammatory response were known as toxic mediators, but are now known collectively as inflammatory mediators (“IM”). IM include various cytokines (e.g., tumor necrosis factor (“TNF”); the interleukins; interferon, etc.), various prostaglandins (e.g., PG I
2
, E
2
, Leukotrienes), various clotting factors (e.g., platelet activating factor (“PAF”)), various peptidases, reactive oxygen metabolites, and various poorly understood peptides which cause organ dysfunction (myocardial depressant factor (“MDF”)). These compounds interact as a network with the characteristics of network preservation and self amplification. Some of these compounds, such as MDF and peptidases, are directly injurious to tissue; other compounds, such as cytokines, coordinate destructive inflammation. Infection (e.g., abscesses and sepsis) is a common complication of critical illness. Certain bacterial exotoxins, endotoxins or enterotoxins are extremely potent stimuli to SIRS/MODS/MOSF. Infection is the single most common cause of SIRS leading to MODS/MOSF. The development and use of effective antibiotics and other supportive measures have not had a significant effect on the death rate from MOSF.
The systemic inflammatory response with its network of systems (e.g., monocyte/macrophage, complement, antibody production, coagulation, kallikrein, neutrophil activation, etc.) is initiated and regulated through the cytokine (“CK”) system and IM's. The CK system consists of more than thirty known molecules each of which activates or suppresses one or more components of the immune system and one or more CK in the network. The CK network is the dominant control system of the immune response. The sources of CK's are monocyte/macrophages and endothelial cells and they are produced in every tissue in the body. Key characteristics of the CK system are as follows: (i) CK are chemical signals coordinating immune system and associated system activities; (ii) commonly, two or more CK will trigger the same action providing a “fail safe” response to a wide variety of different stimuli (the systemic inflammatory response is critical to the individuals survival; these redundant control signals assure a system response which does not falter.); (iii) CK and IM concentrations (usually measured in blood) therefore increase in order to stimulate, control, and maintain the inflammatory response proportionally to the severity of the injury or infection; and (iv) as severity of injury or infection increases, the cytodestructive activity of the system increases resulting in MODS/MOSF. Therefore, high concentrations of CK and IM measured in the patient's blood, which are sustained over time, correlate with the patients risk of death.
Major research efforts by the biotechnology industry have sought cures for SIRS/MODS/MOSF, but none to date have been licensed by the United States Food and Drug Administration (“FDA”) for use in humans. There is currently no definitive therapy for SIRS/MODS/MOSF (Dellinger, 1997; Natanson, 1994), even though a great deal of research funds have been spent on failed therapies for sepsis (Knaus, 1997). Critical care medicine techniques available to manage SIRS/MODS/MOSF are generally supportive in that they do not cure SIRS/MODS/M

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hemofiltration systems, methods and devices used to treat... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hemofiltration systems, methods and devices used to treat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hemofiltration systems, methods and devices used to treat... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3205718

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.