Data processing: measuring – calibrating – or testing – Measurement system – Remote supervisory monitoring
Reexamination Certificate
2000-12-21
2004-01-06
Nghiem, Michael (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system
Remote supervisory monitoring
Reexamination Certificate
active
06675130
ABSTRACT:
FIELD OF THE INVENTION
The invention is related to the field of determining and improving productivity of individuals, and specifically, to a system and method of using a plurality of sensors for determining and improving an individual's level of productivity, as well as productivity of a group of individuals.
BACKGROUND OF THE INVENTION
Level of productivity among individuals tends to vary. Employers often evaluate an employee's productivity, especially an employee performing manual and/or repetitive tasks, by videotaping the employee and/or by hiring independent monitoring groups. Such monitoring actions do not necessarily provide reliable results in quantifying the employee's level of productivity, since these monitoring actions only provide a snapshot of a few minutes to a few hours of the employee's work progress, and typically do not apply to professionals.
Professional employees are typically evaluated by their output, e.g., number of patients seen, number of sales in the last quarter, and quality level of a published publication. The evaluation of their output is a feedback mechanism on the macro level, i.e., after a task is completed. There are no unobtrusive feedback mechanisms that might help a professional better manage their time and tasks on a micro level, i.e., during the execution of a task.
In general, individuals benefit from better managing their time and tasks, even household chores. A group of employees and a group of individuals, e.g., a family, also benefit from better managing their time and tasks.
It has been greatly reported in the literature that in order to provide statistically significant results of an employee's level of productivity, the employee's amount of participation and involvement in performing his assigned tasks must be monitored objectively and over a long period of time. One reason for this is that studies have concluded that certain individuals with particular biological rhythms find it easier to work in the early hours, while other individuals having different biological rhythms find it easier to work in the afternoon, or even in the evening. Typically, when the employee's level of productivity is determined by monitoring the employee, these factors, among others, are not taken into consideration.
Accordingly, there exists a need for a system and method for determining the productivity of individuals which overcome the disadvantages of prior art systems and methods and provide a reliable, accurate and statistically significant determination of a particular individual's level of productivity. Also, there exists a need for a system and method for providing a group of individuals with feedback on its level of productivity.
SUMMARY
An aspect of the present invention is provide a system and method for determining the level of productivity of individuals which overcome the disadvantages of prior art systems and methods.
Another aspect of the present invention is to provide a system and method for determining the level of productivity of individuals using a plurality of sensors.
Yet another aspect of the present invention is to provide a system and method for determining the level of productivity of a group of individuals using a plurality of sensors.
Accordingly, in an embodiment of the present invention, a system is presented having a plurality of sensors for affixing to a person's torso, hands, feet, head, etc. The function of each sensor is to determine the distance between itself and the other sensors to ascertain the distance between the hands and feet, for instance, in order to measure the relative activity of a person's hands and feet. Other sensors may obtain biological data relating to the person, such as heart pulse, blood pressure, etc. The sensors are designed to function non-intrusively and to be non-intrusively placed on the person's body. The system further includes a processor having a memory for storing data collected from the sensors.
The data collected by the sensors and stored in the memory provide information about different types of movements, also referred as activity signatures, which are associated and not associated with work, e.g., a particular set of tasks. The processor is programmed with a set of instructions of various application processes to relate the movements associated with work with different levels of productivity, and even different levels of performing work, e.g., whether the work is being performed carefully or not, i.e., whether the same movements for a given task vary from slow to quick or whether they have a constant pace. The processor is preferably in a remote location and obtains the sensor data via a network.
With the system and method of the present invention, if a person is performing a task, it is possible to determine how productive the person is in performing the task. For example, if the person is writing, the system analyzes the motion of the hand holding the pen, the movement of the arm muscles, and the frequency of movement of the hand holding the pen with respect to the other hand, i.e., the system analyzes various activity signatures related to writing, as determined by the sensors on the body. The data can then be used to determine whether the person was able to think and write quickly or considerably pause and think before writing.
Also, as indicated above, with the system and method of the present invention, one can determine how one is performing their work. For example, in the case of a surgeon performing surgery, the system can determine whether the surgery is being performed slowly or quickly, or some pace in between, and whether the surgeon is tense or relaxed. The data can then be compared with data obtained from other surgeons; for example, a surgeon who is considered to be a great surgeon in performing the same surgery. The comparison can determine whether the surgeon is up to par or even better than the surgeon considered to be a great surgeon. Also, the data obtained by the present system can be used to relate how various events, e.g., the door being opened to one's office, the absence of one or more co-workers, the ringing of the telephone system, the visiting of other people, etc., affects productivity.
Further, with the system and method of the present invention, the sensors are also capable of communicating with sensors located on other people, e.g., co-workers, for determining a level of interaction between a particular individual and other individuals. The system of the present invention can also be linked to wireless devices, such as laptop computers, cellular telephones, and personal digital assistants, in order for a supervisor or manager to have instant access to one's productivity and to the overall productivity of a facility or just the level of productivity in completing a particular task, such as installing an engine in an automobile.
Additionally, by analyzing the sensed data from a group of individuals, it is possible to determine a productivity level of the group, offer performance feedback and even improve the level of productivity by suitably tuning communication tools. For instance, telephone calls can be forwarded to a voice mail system and e-mail can be delayed if an individual in the group is determined by the system of the present invention to be concentrating on an important task (the task can be gleaned from analyzing the individual's gaze and the content appearing on the individual's computer display, and the task's importance or priority can be determined by analyzing the individual's computer data and degree of concentration from the sensed data).
It is envisioned that based on the results yielded by analyzing the movements and biological data of productive workers and nonproductive workers using the system of the present invention, it is possible to generalize work-habits necessary for improving productivity. For example, the data obtained and analyzed by the system of the present invention may indicate that productive workers are working shorter shifts,
Kanevsky Dimitri
Zadrozny Wlodek W.
Dilworth & Barrese LLP
IBM Corporation
Nghiem Michael
LandOfFree
System and method of using a plurality of sensors for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method of using a plurality of sensors for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method of using a plurality of sensors for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3199382