Method for controlling waterborne disease organisms,...

Liquid purification or separation – Processes – Treatment by living organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S747300, C210S906000, C210S908000

Reexamination Certificate

active

06764599

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling waterborne disease organisms, parasites and other infectious agents that afflict man, plants and animals, both domestic and wild. These infectious agents are a serious concern throughout the world. The disciplines of parasitology, epidemiology, epizootiology, and plant pathology have created nomenclature which is over-specific for the purpose of this invention. Various terms such as “infectious agent” or “pathogen” are used interchangeably in this application to include parasites, bacteria, protozoans, fungus, etc. and their infectious stages such as spores, oocysts, etc. that are injurious to man, plants and animals and are of a size which can be removed from the water by the filtration of bivalve mollusks.
The present invention combines knowledge from disparate disciplines within modern society, specifically, the bivalve mollusk growing industry and the public health sector covering an array of specialties, including but not exclusive to veterinary medicine, plant pathology and human health. Normally, these sectors are mutually exclusive for reasons explained in greater detail below. Applicant has found that the marriage of these disparate disciplines may provide results advantageous to them.
Numerous laws and powerful public opinion separate bivalve mollusk producers from those working to prevent the spread of communicable diseases. The present invention will require close cooperation between the disciplines to create any significant benefit.
Some of the biological processes in the present invention, which are described below, were just recently discovered by scientists in the human public health sector looking for ways to identify disease sources and monitor waterborne pathogens. The results of these studies have been viewed by some health and environmental officials as a reason to further restrict bivalve mollusk production. Pathogen/parasite contaminated waters and bivalve mollusk growing areas have historically been strictly separated in order to protect the public from waterborne disease organisms. However, these recent discoveries show that various bivalve mollusks are capable of destroying a variety of waterborne pathogens and parasites known to be very harmful to humans, animals and even plants to the point of injury or lethality (see FIGS.
1
and
2
).
FIG. 2
shows fluorescent In Situ Hybridization (FISH) and immunofluorescent antibody (IFA) images of
Giardia lamblia
cysts (panels A, B and C) and
Cryptosporidium parvum
oocysts (panel D). Viable
G. lamblia
cyst (panel A), nonviable
G. lamblia
cyst (panel B), and cyst shell (=nonviable cysts) with structural wall damage (arrow) (panel C) Viable
C. parvum
oocyst (arrow) and oocyst shells (nonviable oocysts) (arrow heads) (panel D). Note structural damage of the oocyst wall and a small gap between the oocyst wall and the internal structures of viable oocyst. Scale bar 20 micrometers in panels A, B and C; and 10 micrometers in panel D. See Graczyk, Thaddeus K., D. Bruce Conn, Ronald Fayer, David J. Marcogliese, Yves de Lafontaine, Alexandre J. Da Silva, Norman J. Pieniazek,
Asian Freshwater Clams
(
Corbicula fluminea
)
and Zebra Mussels
(
Dreissena polymorpha
)
as Biological Indicators of Contamination With Human Waterborne Parasites
, Aquatic Invaders, Volume 13, Number 4, Winter 2002. The present invention would in fact reverse the practice of complete separation in order to more fully protect the public, man's food supply and our living resources. The current practice of separation produces safer seafood in decreasing amounts. The present invention would greatly enhance public safety over the current practice by providing safer swimming areas, potable drinking water, safer irrigation water, and in fact, could even be used to produce safer seafood by decreasing the number of pathogens in bivalve mollusk growing areas. Historically, when disease outbreaks have occurred, there were legal battles and bad press for both sides. The divide between the two groups was further widened by longstanding laws strongly enforced by health and environmental officials.
Because of this, bivalve mollusks are normally produced in waters where pathogen levels are not a problem. Existing Domestic and Foreign Laws require that bivalve mollusks produced for human consumption come from uncompromised, unpolluted water. The National Shellfish Sanitation Protocol (NSSP) was developed by the Interstate Shellfish Sanitation Commission and is administered by the United States Food and Drug Administration. As new techniques come on line to identify these pathogens, bivalve mollusk production areas are shrinking. For example, closure of parts of Cuckold Creek, St. Inigoes Creek and Carthagena Creek by the Maryland Department of the Environment in October, 2002, illustrate this point. See
FIGS. 3 and 4
. New entrants into this field need to attempt to avoid pathogen polluted waters because they will not be allowed to sell their product. Established growers of bivalve mollusks avoid any mention of any waterborne disease in conjunction with their product. Bivalve mollusk producers' reputations are built by selling a safe and healthful food product to the public. To remain in business, they need to avoid waters polluted with disease organisms and, beyond that, even the mention of it.
Public health providers are members of a much larger group than bivalve mollusk producers. Because most disease monitoring prevention and control is done by them for the general public they see their task as providing a barrier between the public and diseases. To accomplish this, they prevent the harvest of contaminated bivalve mollusks or even bivalve mollusks that may have the possibility of contamination.
The most obvious source of waterborne pathogens from domestic sources is the point source which typically comes out the end of a pipe. The pathogens thus discharged usually come from poorly treated or untreated human sewage and wastewater. The owners of facilities with discharge pipes are required by law to clean up the water prior to its release. However, accidents can happen, including acts of nature, which produce spills containing infectious organisms. Older, overworked systems have plumbing failures and sometimes overflow when storm water mixes with wastewater. One prime example of an older overworked system can be found in Washington, D.C. There, storm water run-off and sewage are combined in the same pipes. Numerous other smaller municipalities from the same era followed the same engineering model. After major storm events the excess water causes many of them to have serious overflow problems. Applicant has been unable to find a single instance where success was achieved in cleaning up the body of water into which these systems overflowed. Instead, fines and penalties were imposed to discourage polluters from doing it again. The thrust of existing regulation and legislation is to punish all polluters in an effort to force intentional polluters to clean up the water. It is hard to envision, due to modern education and the severity of the penalties, that there are many intentional polluters left. If they accept punishment, they admit guilt and have less money to do what they are being asked to do. Admission of guilt is not a solution to the problem, and, as such, many releases just go unreported.
Because bivalve mollusk producers historically have been required to use clean water to grow their crop, they have not looked into intentionally growing bivalve mollusks in polluted waters using their “product” to reduce or remove the very pathogens that contaminate it. Until very recently no one knew how these pathogens were processed by the bivalve mollusks. Most of the literature dealing with this incorrectly assumed that the bivalve mollusks concentrate the pathogens making them more dangerous, or merely passed the infectious material on through, purging it from their bodies in a still viable form capable of contaminating other bivalve mollusks. Cer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for controlling waterborne disease organisms,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for controlling waterborne disease organisms,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlling waterborne disease organisms,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197103

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.