System and method for planning energy supply and interface...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S286000, C705S037000, C705S412000

Reexamination Certificate

active

06681156

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a system for planning energy supply and, more particularly, to such a system for negotiating an energy supply specification with one or more energy suppliers for energy consumers. The invention also relates to a method for planning energy supply. The invention further relates to an interface to an energy management system for use in planning energy supply.
2. Background Information
If several energy suppliers join forces, then more profitable service might be provided through a skillful combination of the performance of the individual energy suppliers. This would, however, require the utilization of knowledge of parameters that influence the cost/benefit relationship for the individual energy supplier's output. Nevertheless, these parameters can vary significantly from one energy supplier to the next (e.g., depending on power plant construction, age). Therefore, such skillful combination would need to employ in-depth information of the internal processes of the individual energy suppliers. Such information may not be known or not be made available because it is proprietary and, thus, kept secret. This limits the capability of optimally deploying individual energy suppliers in an overall plan.
Currently, known planning computers provide “energy schedules” and accounting information for delivered amounts of energy for individual power plants. These energy schedules or targets are typically derived from experiential values, since the potential production of each individual power plant is well known. Consequently, the individual power plants deliver the required output or, alternatively, report faults. For single-point centralized planning and fixed service offerings of only a relatively small count of power plants, this paradigm is probably satisfactory. However, when one or more power plants provide energy for different energy service/output buyers at the same time or in series, this task can no longer be performed satisfactorily in a centralized manner. From the point of view of control technology, this represents a provision/availability process, not a control process, as no closed control loop exists. Therefore, automated optimization cannot take place in this manner alone (i.e., without additional knowledge). Accordingly, output reserves inherent in power plants cannot be utilized.
Currently, individual power plants are locally optimized (e.g., based upon knowledge of operating ratios (i.e., a ratio of actual utilization (au) compared to possible utilization (pu); for economical operations, an operating ratio (au/pu) close to 1 is highly desirable); types of machinery). The electric utility industry, being the largest user of real-time data in the world, has generated a proliferation of communication protocols that were created on an as-needed basis over the years. However, these protocols are posing technical and economic problems due to the growth of national and international power pools and regional centers, and increases in utility data communication applications. Therefore, an international standard protocol has become necessary.
The standards for planning power plant performance/output are designed for a directives based order principle. See, for example, Inter-Control Center Communications Protocol (ICCP) User's Guide: Revision 1, EPRI Report TP-113804, September 1999.
ICCP is also known as the Telecontrol Application Service Element (IEC TASE.2). ICCP is an ISO standard protocol for real-time data exchange within the electric power utilities industry. Many utilities are now applying the Telecontrol Application Service Element.2 (TASE.2), the international standard protocol, for communication of real-time data.
ICCP allows data exchange over wide area networks (WANs) or local area networks (LANs), and uses Manufacturing Messaging Specification (MMS) messages and ICCP objects over OSI or TCP/IP to exchange critical utility data. ICCP provides consistent, standardized inter-utility and intra-utility data exchange by establishing procedures and rules for data exchange. ICCP facilitates the exchange of power system data; real-time monitoring and control; the exchange of historical, scheduling, and energy accounting data; and the exchange of operator messages. With ICCP, utilities may exchange data between plural control center EMS systems, with the NERC inter-regional Security Network, between EMS and distribution SCADA systems, between EMS and power plant DCS systems, between EMS and other utility systems, and between EMS/SCADA and substations.
The ICCP architecture is based on the seven-layer OSI model, and employs MMS for messaging services in layer seven. ICCP is an application built on top of MMS in the upper sublayer of OSI layer seven. Many ICCP implementations only run over OSI.
The ICCP standard foresees a “schedule” object, a “Transfer account” object, and “Transfer Account Conditions”. The Transfer account is a matrix structure, in which the content of the columns is user defined and the values can be floating point or integer. An ICCP server monitors the data to detect when conditions become true and then generates and transfers the account information. The formatting of the data is application specific, which is tagged with a Transfer Account Reference Number.
It is known to employ ICCP to transfer energy scheduling data for power plants. For example, ICCP Block
8
energy scheduling data may be exchanged by employing LiveData ICCP servers marketed by LiveData, Inc. of Cambridge, Mass. The LiveData ICCP server runs over OSI or TCP/IP or both simultaneously. For example, the LiveData ICCP server can maintain ICCP communications to one peer using OSI and to another peer using TCP/IP, simultaneously.
In one application, Block
8
energy scheduling (e.g., hourly scheduling data) and accounting information is transferred from one energy management system (EMS) across a communications infrastructure through two ICCP servers to another EMS on a separate network. It is also known to employ other protocols, such as WSCC, for such transfers.
It is further known to employ ICCP to facilitate data exchange between utility control centers, power pools, regional control centers and non-utility generators.
The Internet comprises a vast number of computers and computer networks that are interconnected through communication links. The interconnected computers exchange information using various services, such as electronic mail (i.e., e-mail), and the World Wide Web (“WWW”). The WWW service allows a server computer system (e.g., a web server, a web site) to send graphical web pages of information to a remote client computer system. The remote client computer system can then display the web pages. Each resource (e.g., computer, web page) of the WWW is uniquely identifiable by a Uniform Resource Locator (“URL”). To view a specific web page, a client computer system specifies the URL for that web page in a request (e.g., a HyperText Transfer Protocol (“HTTP”) request). The request is forwarded to the web server that supports that web page. When that web server receives the request, it sends that web page to the client computer system. When the client computer system receives that web page, it typically displays the web page using a browser. A browser is a special-purpose application program that effects the requesting of web pages and the displaying of web pages.
Currently, web pages are typically defined using extensible mark-up language (XML) or HyperText Markup Language (“HTML”). HTML provides a standard set of tags that define how a web page is to be displayed. When a user indicates to the browser to display a web page, the browser sends a request to the server computer system to transfer to the client computer system an HTML document that defines the web page. When the requested HTML document is received by the client computer system, the browser displays the web page as defined by the HTML document. The HTML document contains various tags that control the displaying of text, graphics,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for planning energy supply and interface... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for planning energy supply and interface..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for planning energy supply and interface... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.