Low permeability, high strength timing fabric for...

Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Woven fabric – Woven fabric is characterized by a particular or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S728100, C280S727000, C280S728200, C280S732000, C280S733000, C280S736000, C442S060000, C442S076000, C442S079000, C442S085000, C442S203000, C442S209000, C442S210000, C442S211000, C442S212000, C442S213000, C442S214000, C442S215000, C442S216000, C442S217000, C442S219000, C442S220000

Reexamination Certificate

active

06713412

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to specific fabric articles exhibiting very low air and/or gas permeability (even upon application of high inflation pressures) and very high tear strengths. Such a specific fabric also permits the incorporation of discrete openings (through cutting, for example) through which air and/or gas introduced by an airbag inflation canister will travel. Such a specific fabric acts as a barrier to the complete introduction of high pressure inflation gases into an airbag cushion, thereby permitting a more controlled, safer inflation upon the occurrence of a collision event. Thus, the specific inventive fabric permits movement of inflation gas and/or air substantially solely through the incorporated openings within the fabric and not through the interstices between the individual fiber constituents. The inventive fabric also withstands the intense heat generated by the explosion that creates the inflation gases and does not lose any appreciable degree of performance during and after such an inflation event. An inflation module, as well as an entire vehicle restraint system, comprising such a specific timing fabric are also contemplated within this invention.
BACKGROUND OF THE PRIOR ART
All U.S. patents cited herein are hereby fully incorporated by reference.
Inflatable protective cushions used in passenger vehicles are a component of relatively complex passive restraint systems. The main elements of these systems are: an impact sensing system, an ignition system, a propellant material, an attachment device, a system enclosure, and an inflatable protective cushion. Upon sensing an impact, the propellant is ignited causing an explosive release of gases filing the cushion to a deployed state which can absorb the impact of the forward movement of a body and dissipate its energy by means of rapid venting of the gas. The entire sequence of events occurs within about 30 milliseconds. In the undeployed state, the cushion is stored in or near the steering column, the dashboard, in a door, in the roof line or roof rail, or in the back of a front seat placing the cushion in close proximity to the person or object it is to protect.
Inflatable cushion systems commonly referred to as air bag systems have been used in the past to protect both the operator of the vehicle and passengers. Systems for the protection of the vehicle operator have typically been mounted in the steering column of the vehicle and have utilized cushion constructions directly deployable towards the driver. These driver-side cushions are typically of a relatively simple configuration in that they function over a fairly small well-defined area between the driver and the steering column. One such configuration is disclosed in U.S. Pat. No. 5,533,755 to Nelsen et al., issued Jul. 9, 1996, the teachings of which are incorporated herein by reference.
Inflatable cushions for use in the protection of passengers against frontal or side impacts must generally have a more complex configuration since the position of a vehicle passenger may not be well defined and greater distance may exist between the passenger and the surface of the vehicle against which that passenger might be thrown in the event of a collision. Prior cushions for use in such environments are disclosed in U.S. Pat. No. 5,520,416 to Bishop; U. S. Pat. No. 5,454,594 to Krickl; U.S. Pat. No. 5,423,273 to Hawthorn et al.; U.S. Pat. No. 5,316,337 to Yamaji et al.; U.S. Pat. No. 5,310,216 to Wehner et al.; U.S. Pat. No. 5,090,729 to Watanabe; U.S. Pat. No. 5,087,071 to Wallner et al.; U.S. Pat. No. 4,944,529 to Backhaus; and U.S. Pat. No. 3,792,873 to Buchner et al.
The majority of commercially used restraint cushions are formed of woven fabric materials utilizing multifilament synthetic yarns of materials such as polyester, nylon 6 or nylon 6,6 polymers. Representative fabrics for such use are disclosed in U.S. Pat. No. 4,921,735 to Bloch; U.S. Pat. No. 5,093,163 to Krummheuer et al.; U.S. Pat. No. 5,110,666 to Menzel et al.; U.S. Pat. No. 5,236,775 to Swoboda et al.; U.S. Pat. No. 5,277,230 to Sollars, Jr.; U.S. Pat. No. 5,356,680 to Krummheuer et al.; U.S. Pat. No. 5,477,890 to Krummheuer et al.; U.S. Pat. No. 5,508,073 to Krummheuer et al.; U.S. Pat. No. 5,503,197 to Bower et al.; and U.S. Pat. No. 5,704,402 to Bowen et al. A two-weave construction airbag cushion is exemplified in U.S. Pat. No. 5,651,395 to Graham et al. but does not discuss the importance of narrow basket-weave single fabric layers.
As will be appreciated, the permeability of an airbag cushion structure is an important factor in determining the rate of inflation and subsequent rapid deflation following the impact event. Different airbag cushions are utilized for different purposes. For instance, some airbag cushions are installed within inflation modules for driver protection within the steering column of an automobile. Others are utilized as protection for front seat passengers and are installed in and around the glove compartment and/or on the dashboard in front of such a passenger seat. Still others have been developed in an effort to protect all passengers during a long-duration impact event, such as, for example, a rollover collision. In those types of crashes, the target airbag cushion must inflate quickly under high pressure (such as between about 10 and 40 psi) and remain inflated at a relatively high pressures in order to provide the greatest degree of protection to such passengers. Furthermore, such long-duration airbag cushions preferably comprise “pillow” formations created through the attachment of at least two different fabrics or fabric ends together and sealed, sewn, or the like, together. Upon inflation the free space between the attachment points inflate as well, thereby producing the desired cushioned “pillow” structures. Such long-duration, “pillowed” structures have been disclosed in the prior art as airbag cushions within U.S. Pat. No. 5,788,270 to Halano as well as within U.S. patent application Ser. No. 09/406,264 to Sollars, Jr., now U.S. Pat. No. 6,220,309.
Generally, recent airbag improvements have involved various types of alterations to either the bag structures and/or coatings, or, most importantly for this invention, the inflators and propellants utilized to provide more effective and safer supplemental vehicle restraint systems. In the past, the standard inflators produced extremely hot and potentially destructive explosions during propellant ignition to effectively and quickly (e.g., in less than 0.2 milliseconds) introduce sufficient amounts of inflation gas into the desired airbag to protect a passenger or driver during a collision. In recent years, more controlled and safer inflation modules have been developed which still provide highly effective inflations as needed. However, some drawbacks have resulted, particularly within and for larger airbag which require long-term, sustained inflation (such as side curtain-type airbags). Most notably, such airbags must be inflated at an even rate to provide the most efficient and effective protection to the vehicle occupants. The “pillowed” structures within the target side curtain airbags thus need a relatively similar inflation pattern. Since most inflators for such airbags have been developed to inflate from a single small area and force inflation gas to portions of the target airbags at differing distances from the point of ignition, controlled inflation at similar speeds have been extremely difficult. New developments, such as that disclosed within European Patent Application 0,995,645 A2 to OEA, Inc. have provided highly desirable procedures and apparati to inflate such side curtain airbags in more efficient and effective manners. In this specific Application, the ignited propellant is forced into an inflation manifold (for example, a rubber tube) located in the roofline of the vehicle. This manifold comprises openings at selected locations which permit passage of certain limited amounts of inflation gas to eventually enter and inflate the target airbag, particularly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low permeability, high strength timing fabric for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low permeability, high strength timing fabric for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low permeability, high strength timing fabric for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3194969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.