Traffic management system based on packet switching technology

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Traffic analysis or control of surface vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S118000, C340S907000

Reexamination Certificate

active

06792348

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a traffic management system and a traffic management method for managing in a road network the vehicle traffic formed on a physical layer by a plurality of vehicles which travel along a plurality of road sections of the road network and pass certain road points located at the road sections of the road network.
In particular, the present invention addresses the problems of how an effective traffic management system can be devised, which provides more intelligence for an efficient traffic management, regarding the traffic management aspect of merely effectively monitoring the existing traffic as well as the traffic management aspect of effectively controlling the traffic. For example an effective setting of traffic control signs, an effective route-planning by not only considering traffic jams and congestions but also road charging, the gathering of statistical data from existing traffic, the prevention of dangerous or generally unwanted traffic situations by changing traffic signs in case of dangerous traffic situations as well as the achieving of desired traffic situations should be possible. Furthermore, the traffic control system of the invention should be easy to operate, user-friendly and low-cost.
BACKGROUND OF THE INVENTION
With the ever increasing demands to growing mobility, the automobile industry has developed the vehicular technology to such a degree that now a range of products for various purposes and missions are available and an adequate cost-benefit balance can be provided for every application. On the other hand, the growing demand to mobility has caused the need for the public authorities to extend the old network of roads and highways to cope with the ever increasing traffic.
However, the expansion of the network and the related infrastructure has been notably smaller than the increase of the number of vehicles. That is, the existing road networks cannot cope with the ever increasing traffic and this unbalance causes traffic situations with congestions and accidents. Other consequences are an increased fuel consumption, general waste of time, the environmental pollution, noise, stress and other discomfort for humans. Apart from not very effective counter measures to stop the growth of the traffic, such as increasing fuel cost and higher taxation, there are no effective counter measures with which the gap between the mobility demand and the necessary infra-structural means can be bridged which leads to higher transportation costs, waste of fuel and time, environmental problems as well as a lower safety level.
These circumstances have resulted in a high demand for effective traffic control measures to avoid a collapse of a complete transportation system. Therefore, it is now generally accepted that a wide range of more global and integrated measures have to be identified and implemented together with a systematic approach. In particular, the demands to a new traffic control system are to balance the demand and offer within the whole transport system, i.e. to manage the transport resources (roads, traffic signs etc., traffic flow control) to be optimally adapted to the traffic situations and demands (i.e. number of vehicles, type of vehicles, desired destination etc.).
At present several new approaches for more effective traffic (congestion) control systems are tested, in particular in the Netherlands. However, most of the traffic control systems existing today are of a rather static nature. Only some of them use changeable traffic signs depending on the time of day or the actual traffic situation, e.g. a variable speed limit on a motorway depending on the congestion condition. Thus, only a few traffic signs (such as parking permission, speed limit, use of one or two lanes on a road) may have a different meaning depending on the time of day or the day of the month and they are not controlled in an integrated manner, i.e. they do not take into account a traffic situation which exists elsewhere (away from the road section where e.g. the particular variable speed limit is arranged) but which may also have an influence on the road section considered.
For monitoring purposes certain highways are on a limited scale equipped with sensors, which measure the traffic flow and provide information in the traffic loads or bad weather conditions in order to change some traffic signs mounted above the highway to indicate dangerous situations.
However, this change of warning signs like bad weather conditions, accident and congestion only change the traffic signs on the highways in a very limited scale, namely on a rather local scale rather than being able to more globally control the complete traffic flow for example in an integrated manner in a whole area of for example one or two local areas, e.g. a complete city.
Intelligent Speed Control (Intelligente Snelheidsadaptor)
In an intelligent speed control system, which is currently being tested in the Netherlands the aim is to control the maximum speed by means of broadcasting systems. The basic idea here is to have a system broadcast the maximum speed in a certain area. Each vehicle is equipped with a traffic information unit, e.g. a speed sensor, which detects the maximum speed broadcast from the speed broadcasting system of the system. The speed broadcasting system receives information from a traffic information system and broadcasts the respective appropriate speed in each area. In this field trial each vehicle has a speed sensor, which detects the broadcast maximum speed and informs a speed control system (similar to the well-known cruise-control) inside the vehicle about the determined speed. As in the cruise control system of course there is the possibility to overrule the system in certain cases such as emergency situations etc.
In this system each vehicle needs to be equipped with the sensor and the speed control system or a system is needed to be able to track each vehicle, which drove with too high speed. For example, a GPS system may be used for tracking the speed of each vehicle or the vehicle itself records (like a flight-recorder) all travel details and reports this information back to the system. In such a case a system like a tag billing system (rekening-rijden) can be established.
Tag Billing System (Rekening-Rijden)
In the Netherlands also field trials are performed to have each vehicle equipped with an identification tag connected to the number plate. At certain road points along the roads stations may be arranged which sense the passing of a vehicle with an identification tag. Thus, it will be possible to charge the persons who have used that road. Similar to the motorway charging system for example employed in Italy where a sensing apparatus senses the passing of a vehicle through a toll station, the system in the Netherlands is based on a more individual charging because each tag will in a unique manner identify the passing vehicle.
The whole system, i.e. determining the vehicles which use a certain road and the generation of the bill can be automated to a large extent and it may be used to control access to busy city centres etc.
Route-Planners
Existing route-planners (mostly employed in vehicle navigation systems) are also static and do not take into account road-blocks, congestions, i.e. the actual traffic situation. On-board-computers inform the driver about the shortest route to the corresponding destination, but these are very static and updates are costly (due to the fact that the information is stored on a local disc in the on-board-computer). Such route-planners are only capable of planning a route for a single individual vehicle dependent on its desired vehicle destination without considering current or possibly foreseeable future traffic conditions.
Fleet-Managing Systems
Fleet-management companies are able to track their vehicles, bikes etc. and to determine the nearest participant to a corresponding desired destination (e.g. a customer). Such systems are based on GPS information or on the usage of radio links. However, the nearest parti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Traffic management system based on packet switching technology does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Traffic management system based on packet switching technology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Traffic management system based on packet switching technology will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.