Process for producing bisphenol A

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06740784

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an improved process for producing bisphenol A {2,2-bis(4-hydroxyphenyl)propane}. More particularly, it pertains to a process for producing bisphenol A by subjecting phenol and acetone to condensation reaction in the presence of as a catalyst, an acid type ion exchange resin which is modified in part with a sulfur-containing amine compound, while suppressing the deterioration of catalytic activity due to methanol as an impurity in acetone to achieve a high conversion.
BACKGROUND ART
It is well-known that bisphenol A is an important compound as a starting raw material for epoxy resin or an engineering plastic such as polycarbonate resin and polyarylene resin, and accordingly it tends to increasingly expand its demand year by year.
Bisphenol A is produced by the condensation reaction of excess phenol with acetone in the presence of an acidic catalyst and as the case may be, a sulfur compound as a cocatalyst.
There has heretofore been employed an inorganic mineral acid such as sulfuric acid and hydrogen chloride as an acid catalyst to be used in the reaction. In recent years, however, attention has been paid to cationic exchange resins (refer to UK Patent GB 842209, 849565 and 883391), which have been brought into industrial applications.
On the other hand, it is known that useful sulfur compounds to be used as a cocatalyst include alkyl mercaptans with or without a substituent group such as methyl mercaptan, ethyl mercaptan and thioglycol acid ( refer to U.S. Pat. Nos. 2,359,242 and 2,775,620). The mercaptans have a function of increasing the rate of reaction and at the same time, enhancing the selectivity. For instance, in the production of bisphenol A, there are formed as a reaction by-product, 2-(2-hydroxyphenyl)-2-(4-hydroxyphenyl)-propane (o, p′-isomers) as a principal component and in addition thereto, trisphenol and polyphenol. In particular, bisphenol A, when being employed as a starting raw material for polycarbonate resin or polyarylene, is required to be minimized in contents of the above-mentioned by-products, highly pure and free from coloration. As such, the mercaptans are employed to increase the rate of reaction, suppress the formation of the by-products, and enhance the selectivity.
However, the mercaptans cause corrosion of equipment and involve environmental and sanitary problems such as odor. In recent years therefore, use is made as a catalyst, of a variety of acid type modified ion exchange resins in which a sulfur-containing group is introduced in part of its sulfonic acid group in place of the combinational use of the aforesaid cation exchange resin and mercaptans.
There is known as one of the aforesaid acid type modified ion exchange resin, an acid type ion exchange resin which is modified in part with a sulfur-containing amine compound. In the case however, where bisphenol A is produced by the condensation reaction of phenol and acetone in the presence of a catalyst composed of the foregoing acid type ion exchange resin which is modified in part with a sulfur-containing amine compound, there is brought about a problem in that the activity of the catalyst is deteriorated by methanol as an impurity in acetone. In order to solve the aforesaid problem, there is proposed a method for suppressing the deterioration of the catalyst by allowing a small amount of water to be present in the starting raw material for reaction ( refer to Japanese Patent Application Laid-Open Nos. 172241/1994 (Heisei 6), 175898/1998 (Heisei 10), 251179/1998 (Heisei 10) and 251180/1998 (Heisei 10). Nevertheless, the foregoing method can not be said to be always satisfactory, since the deterioration of the catalyst is newly brought about by water, thus making it impossible to sufficiently exert the effect on suppressing the deterioration of the catalyst.
On the other hand, there is proposed a method for decreasing the content of the compound as impurities in the starting raw material to less than 0.1% by weight by subjecting the starting raw material for reaction to refining treatment, said compound being represented by the formula: R—X, wherein R is an alkyl group, an alkenyl group, a cycloalkyl group or a cycloalkenyl group, and X is OH, a halogen atom, a carboxylate group, a sulfate group or a sulfonate group. Nevertheless, the method just mentioned can not be said to be always satisfactory, since it is obliged to subject phenol and acetone as the starting raw materials to refining treatment, thereby increasing the refining steps thereof.
DISCLOSURE OF THE INVENTION
Under such circumstances, it is a general object of the present invention to provide a process for steadily producing bisphenol A in high conversion by subjecting phenol and acetone to condensation reaction in the presence of as a catalyst, an acid type ion exchange resin which is modified in part with a sulfur-containing amine compound, while suppressing the deterioration of catalytic activity due to methanol as an impurity in acetone.
Other objects of the present invention will become obvious from the text of the specification hereinafter disclosed.
In such circumstances, intensive extensive research and investigation were accumulated by the present inventors in order to achieve the above-mentioned objects. As a result, it has been found that the objects of the present invention can be achieved by using as a catalyst, an acid type ion exchange resin which is modified in part with a sulfur-containing amine compound, and which has different modification rate in accordance with the concentration of methanol in acetone as a starting raw material. The present invention has been accomplished on the basis of the foregoing findings and information.
Specifically, the present invention provides a process for producing bisphenol A by subjecting phenol and acetone to condensation reaction in the presence of, as a catalyst, an acid type ion exchange resin which is modified in part with a sulfur-containing amine compound, characterized in that the foregoing ion exchange resin having a modification rate in the range of 10 to less than 20 mol % is used for a methanol concentration in acetone of lower than 250 ppm by weight and the resin having a modification rate in the range of 20 to 65 mol % is used for a methanol concentration in acetone being in the range of 250 to 8000 ppm by weight.
BEST MODE FOR PRACTICING THE INVENTION
The process according to the present invention is that for producing bisphenol A by subjecting phenol and acetone to condensation reaction in the presence of as a catalyst, an acid type ion exchange resin which is modified in part with a sulfur-containing amine compound. The acid type ion exchange resin which is used as a base for the above-mentioned modified acid type ion exchange resin is not specifically limited, but can be selected for use from the ion exchange resins that have hitherto been customarily used as a catalyst for bisphenol A. Thus from the viewpoint of catalytic activity and the like, sulfonic acid type ion exchange resin which is strongly acidic is suitable in particular.
The foregoing sulfonic acid type ion exchange resin is not specifically limited provided that it is a strongly acidic ion exchange resin bearing a sulfonic acid group, but is exemplified by sulfonated styrene/divinyl benzene copolymer, sulfonated and crosslinked styrene polymer, phenol formaldehyde/sulfonic acid resin and benzene formaldehyde/sulfonic acid resin and the like.
On the other hand, the sulfur-containing amine compound to be used for partially modifying the acid type ion exchange resin is not specifically limited, but can be properly and optionally selected for use from previously well known compounds which can be used for modifying an acid type ion exchange resin. Examples of the above-mentioned sulfur-containing amine compound include mercaptoalkylpyridines such as 3-mercaptomethylpyridine, 3-(2-mercaptoethyl)pyridine and 4-(2-mercaptoethyl)pyridine; mercaptoalkylamines such as 2-mercaptoethylamine, 3-mercaptopropylamine and 4-mercaptobutylamine; th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing bisphenol A does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing bisphenol A, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing bisphenol A will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193145

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.