Telecommunications – Radiotelephone system – Zoned or cellular telephone system
Reexamination Certificate
2001-04-30
2004-04-20
Tran, Sinh (Department: 2681)
Telecommunications
Radiotelephone system
Zoned or cellular telephone system
C455S456200, C455S456300, C455S456400, C455S456500, C455S456600
Reexamination Certificate
active
06725051
ABSTRACT:
FIELD OF THE INVENTION
The present invention is related to the field of obtaining location data. More particularly, the present invention is related to methods for peripheral devices to obtain location data from second devices.
BACKGROUND OF THE INVENTION
Electronic devices continue to expand their presence in our everyday routines. Portable personal computers, cellular phones, and devices such as hand held personal digital assistants (“PDA”) are a few examples of devices that have become relatively ubiquitous. Additionally, advancing wireless communications protocols for communications over short, medium, and long ranges allow these portable electronic devices to readily connect with one another as well as to a wide variety of other resources.
Examples of short-range wireless protocols include infrared light transmissions (“IR”) and short-range radio frequency (“RF”) transmissions. When used with portable devices, the operable range of IR communications is usually limited by the ability of the handheld device to accurately aim an IR at another device's IR port. Current IR protocols for portable devices support transmission over a range of about 3 meters. Short range RF is also currently used for portable device wireless communication. An example is the “Bluetooth” RF protocol that allows computer and other electronic devices to communicate over short distances without cabling. Bluetooth is a wireless standard developed by an industry consortium made up of 3Com, Ericsson, IBM, Intel, Agere, Microsoft, Motorola, Nokia, and Toshiba with a mission of creating a standard wireless protocol. More information, including protocol specifications, can be obtained on the Bluetooth website: www.bluetooth.com, with the contents thereof incorporated herein by reference.
The current Bluetooth protocol has an operable range of about 10 meters. IR and RF technologies are also available for wireless communication over medium and long ranges, with operable range generally determined by the power of RF signal. Medium range RF technologies include those used for wireless local area network (“WLAN”) communications. Longer-range wireless technologies generally include more powerful RF transmissions such as those used for cellular phones.
Wireless technologies are also available for reporting location data of portable devices. Generally, these technologies may be referred to as real time location systems (“RTLS”), with a well-known example comprising global positioning systems (“GPS”). RTLS technology generally comprises triangulating with satellites to determine position. The adoption of RTLS technology for applications and devices has been rapid. While the technology has traditionally been adopted by industry and the military, it has become widely used in consumer products. For example, outdoorsmen, sailors, transportation professionals, and travelers use handheld GPS units for instant location data. Automobiles are currently available with RTLS systems that allow computers in the car to indicate to the driver a current location for the car. Further, the car-based computer may be able to query a map database to determine detailed directions from the car's current location to reach a desired location, and to then give those detailed directions to the driver. The map database may be stored locally on the car computer, or the computer may query a network such as the Internet or other service remotely via wireless technology.
More and more widely available portable electronic devices will utilize RTLS type technology in the near future. As an example, handheld computers and PDA's are becoming available that feature RTLS technology. These devices will be able to take advantage of their known location to report various desired data about nearby resources. As an example, a mobile user may use a PDA to determine what restaurants are nearby. The PDA will use RTLS technology to determine its location, then query via a wireless connection a network service provider to determine what restaurants are close by. Further, the PDA may even query these restaurants over the network service to place an order.
By way of additional example, PDA's, portable personal computers, and the like may access via wireless communications resources such as printers. For example, a mobile user may wish to print an e-mail from his PDA, a photo from his digital camera, a map for directions to a selected location, or the like. The mobile user looking for local restaurants, for instance, may wish to download menus from restaurants to his PDA, and then print paper copies. To do so, the RTLS component determines the PDA location, then may query a network service via wireless technology to determine if a printer is close by. Once a printer is located, the user can go to the printer and send data from his PDA to the printer via a short-range wireless signal for printing. Many other examples are of course anticipated that will utilize similar methods. By way of example, it will be of utility for a network administrator to know the geographical location of network components such as printers for maintenance and support, general inventory, and other purposes.
To accommodate such methods, the printer or other device that is to be a resource for the portable PDA or computer will of course need to be able to determine and report its location. In order to do so, two general options exist for the device. As a first, location data may be manually input to the device for reporting. This first method is disadvantageously susceptible to error, particularly for devices such as printers that may be moved from time to time. Errors may occur in the data entry, or the device may be moved to a new location. As a second method, the device may of course be provided with long-range wireless RTLS technology component for determining its location. While this second method is likely to have a high accuracy, it is disadvantageous in that RTLS componentry tends to be costly.
Unresolved needs therefore exist in the art.
SUMMARY OF THE INVENTION
The present invention is directed to a method for determining a location for a peripheral device. The method comprises the general steps of communicating with a second device via a wireless protocol and querying the second device for its location data. After it is obtained, the second device location data is evaluated to determine its reliability, and is compared to the device's current location data to determine if it is more reliable. A preferred method for determining the data reliability comprises determining the protocol of data transmission: short-range protocols are assigned a higher reliability than medium range protocols. The second device location data will then replace the device's current location data if it is more reliable. In a preferred embodiment of the method of the invention, the method is for practice with a document production peripheral device including, but not limited to, faxes, scanners, printers, and copiers.
The preferred method embodiment also comprises a preliminary step of detecting a trigger event of either an internal or external type before communicating with the second devices such as PDA's or portable computers. Internal type trigger events comprise the occurrence of peripheral device power up, change of network settings, a defined time passage, or the like. External trigger events comprise reception of an interrupt signal, indicating that a second device is in communication with the peripheral device. Internal trigger events will initiate a search for a second device, while external trigger events will initiate a dialogue with a device already in communication with the peripheral device. If a search is to be initiated, preferred method steps comprise a sequential search progression logic that allows the distance between the peripheral device and the second device to be estimated.
It will be appreciated that the present invention lends itself well to practice in the form of a computer program product. Accordingly, it will be understood that an additional em
Hewlett--Packard Development Company, L.P.
Nguyen Huy D
Tran Sinh
LandOfFree
Method for obtaining location data does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for obtaining location data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for obtaining location data will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3189424