Readout technique for microbolometer array

Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S330000

Reexamination Certificate

active

06683310

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a microbolometer focal plane array, and more particularly pertains to an improved readout technique for the microbolometer array.
BACKGROUND
Thermal infrared detectors are detectors, which operate by sensing the heating effect of infrared radiation. Thermal detectors generally do not need to be cooled below room temperature, which gives them an important practical advantage. Thermal infrared detectors that operate at room temperature have been known for 200 years, but recently the availability of integrated circuit and micromachining technology has greatly increased interest in this field. It is now practical to manufacture an array containing many thousands of thermal infrared detectors, which operates well at room temperature.
A bolometer is a thermal radiation detector that operates by absorbing incident electromagnetic radiation (typically infrared radiation), converting the absorbed infrared energy into heat, and then indicating the resulting temperature change in the detector by a change in its electrical resistance, which is a function of temperature. A microbolometer is a small bolometer, typically a few tens of microns in lateral size. Microbolometer infrared imaging systems are typically designed to be sensitive to long-wave infrared, typically in a wavelength range of about 8-12 micrometers. A two-dimensional array of such microbolometers, typically 120×160 microbolometers, can detect variations in the amount of radiation emitted from objects within its field of view and can form two-dimensional images therefrom. A typical array can have more than 80,000 microbolometers. Linear arrays of microbolometers may similarly be formed to form line images. In such large arrays of microbolometers, it is necessary to measure the resistance of all of the individual microbolometers in the array without compromising the signal to noise ratio of the microbolometers. Because it is impractical to attach thousands of electrical wires to such an array to measure all the microbolometer electrical resistances in the array, microbolometer arrays are typically built on a monolithic silicon called a “read out integrated circuit” (ROIC) which is designed to measure all the individual microbolometer electrical resistances in the array in a short time, called the “frame time.” The term “frame time” refers to a time in which a microbolometer array produces each complete picture or image of an object being viewed. The frame time is typically around {fraction (1/30)}
th
of a second, but it can be faster or slower than the typical time of {fraction (1/30)}
th
of a second. In order to allow the microbolometer array to respond adequately to time-dependent changes in the detected infrared radiation, the thermal response time of each microbolometer is typically adjusted, by power design, to be about the same value as the frame time.
A typical method used by the ROIC to measure the electrical resistance of all the microbolometers in the array is to apply a “bias pulse” of electrical voltage (or current) to each microbolometer in the array, and to measure a resulting signal current (or voltage). It is more common to apply a voltage bias pulse to each microbolometer in the array and to measure a resulting current signal from each microbolometer in the array during each frame time. In large arrays such as the one included in the ROICs, it is usual to apply such bias pulses to more than one microbolometer simultaneously, and to measure the resulting signal currents simultaneously. However, it becomes difficult to read each of the microbolometers in the array within the frame time. Therefore, it is advantageous to divide such large arrays into several smaller arrays to ease the reading process of large arrays. In such cases, each smaller array would be readout as if it were a separate array using its own data readout port and feeding data to a corresponding measurement circuit associated with each smaller array. The division of the large arrays need not be a physical division.
However, such a scheme of dividing the array into smaller arrays with each smaller array having its own measurement circuit to ease the reading of the larger array can produce undesirable deficiencies in the produced image. This is generally due to different drifts in the output signals of the smaller arrays induced by changes in different measurement circuit characteristics, such as offset voltage, offset current, and gain.
Therefore, there is a need in the art to design and operate a large array including multiple smaller arrays having their own data readout ports such that they do not produce the undesirable pattern artifacts in the produced image due to drifts in measurement circuits associated with each of the smaller arrays.
SUMMARY OF THE INVENTION
The present invention provides a technique to reduce undesirable pattern artifacts in an image produced by a microbolometer array including multiple smaller arrays. In one aspect of the present invention, this is accomplished by applying a bias pulse to each of the microbolometers in the multiple smaller arrays and measuring a resulting signal corresponding to the applied bias pulse for each of the microbolometers using multiple measurement circuits associated with the multiple smaller arrays during the frame time. Further, the technique requires applying one or more known bias pulses (calibration signals) to the multiple measurement circuitry associated with the smaller arrays during the frame time and measuring one or more resulting calibration signals corresponding to the applied one or more known bias pulses. Thereafter the technique requires computing an offset parameter for each of the multiple smaller arrays based on the corresponding measured one or more resulting calibration signals and correcting the measured resulting signal using the associated computed offset parameter to produce an output signal that significantly reduces the undesirable pattern artifact in the image.
Another aspect of the present invention provides a technique for reading out a large microbolometer array including multiple groups of microbolometers comprises using multiple measuring circuits to readout each of the groups of microbolometers. This is accomplished by applying a bias pulse during a frame time to each of the microbolometers in the group of microbolometers. The technique then includes measuring a resulting signal corresponding to the applied bias pulse during the frame time for each of the microbolometers in the groups of microbolometers using multiple measurement circuitry associated with each of the smaller arrays. Then the technique includes applying one or more calibration bias pulses during the frame time to the measuring circuitry associated with each of the groups of microbolometers. Further, the technique includes measuring one or more resulting calibration signals corresponding to the applied calibration bias pulses during the frame time. Thereafter the technique includes computing correction parameters for each of the groups of microbolometers and correcting the measuring resulting signal using associated computed correction parameters to produce an output signal that substantially reduces the undesirable image defects in the produced image.
Another aspect of the present invention is an infrared radiation detector apparatus for reducing undesirable deficiencies in an image produced by a microbolometer array including multiple smaller arrays. The infrared radiation detector apparatus comprises a microbolometer array including multiple smaller microbolometer arrays. The apparatus further includes a first timing circuit coupled to the array to apply a bias pulse to each of the microbolometers in the smaller arrays during a frame time. The apparatus also includes multiple measurement circuits coupled to the corresponding smaller arrays to measure resulting signals associated with each of the applied bias pulses during the frame time. Also included in the apparatus are multiple calibration circuits coupled to the corre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Readout technique for microbolometer array does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Readout technique for microbolometer array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Readout technique for microbolometer array will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3188428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.