Liquid crystal display device using a hologram, hologram...

Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S064000, C349S106000, C359S012000, C359S015000, C430S001000

Reexamination Certificate

active

06762810

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a liquid crystal display device, and more specifically to a liquid crystal display device using a hologram diffuse plate. The present invention is also concerned with a hologram scatter plate used for liquid crystal display devices, etc., and a process of replicating such a diffuse reflection type hologram.
Referring here to a direct-view type of liquid crystal display device, a scatter plate
12
is generally located on the side of a liquid crystal display element
20
opposite a backlight
11
to diffuse light emanating therefrom, as shown in
FIG. 18
, thereby widening a range capable of viewing an image displayed thereon (a visual field range).
A problem with this system is, however, that the efficiency of utilization of light is not high due to the use of a general scatter plate formed of frosted glass, and the angle of field is limited as well. The angle of field may be made wide by use of a plurality of scatter plates, but this offers a problem or gives rise to some considerable luminance drop.
A self-luminous type backlight consumes a large amount of power, and causes considerable battery life reduction when used with laptop computers, etc.
SUMMARY OF THE INVENTION
In view of such problems associated with the prior art, an object of the present invention is to provide a liquid crystal display device which has a wide visual field range and reduced luminance drops, so that bright displayed images can be presented.
Another object of the present invention is to provide a liquid crystal display device which uses a diffuse reflection type hologram for backlighting so that bright displays can be presented in the light without recourse to any self-luminous backlight. Yet another object of the present invention is to provide a liquid crystal display device which can be used in combination with a self-luminous type backlight, so that battery life can be extended by turning off the self-luminous type backlight or using the self-luminous type backlight at a reduced luminance.
A further object of the present invention is to provide a hologram scatter plate enabling bright displayed images to be presented over a wide range of wavelengths and viewing angle hardly achievable with conventional hologram systems.
A still further object of the present invention is to provide a process of fabricating, by replication, a large diffuse reflection type hologram without joints or recorded joints, which is compatible with increased size and improved quality in connection with backlights, projector screens, combiners, etc. for liquid crystal display devices.
To accomplish the aforesaid objects, the present invention provides a liquid crystal display device using a hologram, characterized in that a liquid crystal display element is provided on a display surface side thereof with a diffuse transmission type hologram capable of diffusing and transmitting light incident from a specific direction only in a direction defined as a viewing region.
In this case, a scatter plate may be located between the liquid crystal display element and a backlight.
The present invention also provides a liquid crystal display device using a hologram, characterized in that between a liquid crystal display element and a backlight there is located a diffuse transmission type hologram capable of diffusing and transmitting light incident from a specific direction only in a direction defined as a viewing region.
In these cases, it is desired that the diffuse transmission type hologram has a property of diffusing and transmitting light only in a direction defined as a viewing region within a plurality of wavelength regions of different colors.
Further, the present invention provides a liquid crystal display device using a hologram, characterized in that a liquid crystal display element is provided on a back surface side thereof opposite to a display surface side thereof with a diffuse reflection type hologram capable of diffusing and reflecting light incident from a specific direction only in a direction defined as a viewing region.
In this case, a diffuse reflection plate or a reflector plate may be located on the back surface side of the diffuse reflection type hologram.
When a TN liquid crystal cell is used as the liquid crystal display element, the diffuse reflection type hologram enables diffuse reflection to occur within a range wherein the contrast of the liquid crystal cell is at least 2. When an STN liquid crystal cell is used as the liquid crystal display element, the diffuse reflection type hologram enables diffuse reflection to occur within a range wherein the contrast of the liquid crystal cell is at least 2.
More illustratively, when a TN liquid crystal cell is used as the liquid crystal display element, it is desired that the diffuse reflection type hologram enable light incident thereon from above and at an angle of about 20° with respect to a normal line thereof to be diffused and reflected within a range defined by an upward angle about 10°, a downward angle of about 40°, and breadth-wise angles of about 60°. When an STN liquid crystal cell is used as the liquid crystal display element, it is desired that the diffuse reflection type hologram enable light incident thereon from above and at an angle of about 20° with respect to a normal line thereof to be diffused and reflected within a range defined by an upward angle about 20°, a downward angle of about 30°, and breadth-wise angles of about 30°.
A self-luminous type backlight unit may be located on the back surface side of the diffuse reflection type hologram.
To accomplish the aforesaid objects, the present invention provides a hologram scatter plate which reflects incident light in a direction different from a direct reflection direction thereof, characterized in that a transmission type hologram layer and a back side layer are stacked together in the described order as viewed from an incident side thereof.
In accordance with this aspect, there are three cases where the transmission type hologram layer has a diffusion function and a diffraction function while the back side layer is a mirror reflection layer; the transmission type hologram layer has diffraction function while the back side layer has a diffuse reflection function; and the transmission type hologram layer has both a diffusion function and diffraction function while the back side layer has diffuse reflection function.
The transmission type hologram layer used may have a diffraction function, or a diffusion function and diffraction function, with respect to a plurality of different wavelengths.
The present invention also includes a liquid crystal display device having any one of the aforesaid hologram scatter plates located on a back surface side of a liquid crystal display element.
To accomplish the aforesaid objects, the present invention further provides a diffuse reflection type hologram replication process, characterized in that while a photosensitive material film is slid on a fixed diffuse reflection type hologram plate in contact relation thereto, the hologram plate is irradiated from the photosensitive material film with a light beam of linear shape in section that becomes wide in a widthwise direction of the film, so that a diffuse reflection type hologram can be continuously recorded in the photosensitive material film by interference of the incident light beam with a light beam reflected and diffracted by the diffuse reflection type hologram plate.
In this case, it is preferable that the diffuse reflection type hologram plate is fixed on the surface of a transparent rod-like member rounded at at least both edges thereof. Such a transparent rod-like member may be exemplified by a semicylindrical member.
It is also desired that a combined index matching and lubricating liquid be contained between the diffuse reflection type hologram plate and the photosensitive material film.
The light beam of linear shape in section used may be exemplified by a light beam that diverges in its linear direction alone.
According to o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid crystal display device using a hologram, hologram... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid crystal display device using a hologram, hologram..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid crystal display device using a hologram, hologram... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.