Method and apparatus for directional radio communication

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S561000, C455S063300, C455S067150, C455S067700, C455S277200, C342S359000

Reexamination Certificate

active

06643526

ABSTRACT:

The present invention relates to a method and apparatus for directional radio communication in which signals between a first station and a second station may be transmitted only in certain directions. In particular, but not exclusively, the present invention is applicable to cellular communication networks using space division multiple access (SDMA).
With currently implemented cellular communication networks, a base transceiver station (BTS) is provided which transmits signals intended for a given mobile station (MS), which may be a mobile telephone, throughout a cell or cell sector served by that base transceiver station. However, space division multiple access (SDMA) systems have now been proposed. In a space division multiple access system, the base transceiver station will not transmit signals intended for a given mobile station throughout the cell or cell sector but will only transmit the signal in the beam direction from which a signal from the mobile station is received. SDMA systems may also permit the base transceiver station to determine the direction from which signals from the mobile station are received.
SDMA systems may allow a number of advantages over existing systems to be achieved. In particular, as the beam which is transmitted by the BTS may only be transmitted in a particular direction and accordingly may be relatively narrow, the power of the transceiver can be concentrated into that narrow beam. Likewise, the signal transmitted to the BTS by, for example, a MS will be received by the BTS only in a limited number of beam directions. It is believed that this results in a better signal to noise ratio with both the signals transmitted from the base transceiver station and the signals received by the base transceiver station. Additionally, as a result of the directionality of the base transceiver station, an improvement in the signal to interference ratio of the signal received by the base transceiver station can be achieved. Furthermore, in the transmitting direction, the directionality of the BTS allows energy to be concentrated into a narrow beam so that the signal transmitted by the BTS can reach far away located mobile stations with lower power levels than required by a conventional BTS. This may allow mobile stations to operate successfully at greater distances from the base transceiver station which in turn means that the size of each cell or cell sector of the cellular network can be increased. As a consequence of the larger cell size, the number of base stations which are required can also be reduced leading to lower network costs. SDMA systems generally require a number of antenna elements in order to achieve the required plurality of different beam directions in which signals can be transmitted and received. The provision of a plurality of antenna elements increases the sensitivity of the BTS to received signals. This means that larger cell sizes do not adversely affect the reception of signals by the BTS from mobile stations.
SDMA systems may also increase the capacity of the system, that is the number of mobile stations which can be simultaneously supported by the system is increased. This is due to the directional nature of the communication which means that the BTS will pick up less interference from mobile stations in other cells using the same frequency. The BTS will generate less interference to other mobile stations in other cells using the same frequency when communicating with a given MS in the associated cell.
Ultimately, it is believed that SDMA systems will allow the same frequency to be used simultaneously to transmit to two or even more different mobile stations which are arranged at different locations within the same cell. This can lead to a significant increase in the amount of traffic which can be carried by cellular networks.
SDMA systems can be implemented in analogue and digital cellular networks and may be incorporated in the various existing standards such as GSM, DCS 1800, TACS, AMPS and NMT as well as he proposed next generation standards such as, for example, UMTS (Universal Mobile Telecommunications System). SDMA systems can also be used in conjunction with other existing multiple access techniques such as time division multiple access (TDMA), code division multiple access (CDMA) and frequency division multiple access (FDMA) techniques.
One problem with SDMA systems is that the direction in which signals should be transmitted to a mobile station needs to be determined. In certain circumstances, a relatively narrow beam will be used to send a signal from a base transceiver station to a mobile station. Therefore, the direction of that mobile station needs to be assessed reasonably accurately. As is known, a signal from a mobile station will generally follow several paths to the ETS. Those plurality of paths are generally referred to as multipaths. A given signal which is transmitted by the mobile station may then be received by the base transceiver station from more than one direction due to these multipath effects.
In general, the decision as to the beam direction which is to be used by the BTS in order to transmit a signal to a mobile station is based on information corresponding to the data burst previously received by the BTS from the given MS. As the decision is based on information received corresponding to only one burst, problems may occur if, for example, the data burst transmitted by the mobile station is superimposed with strong interference.
An additional problem is that the direction in which a signal is to be transmitted by the BTS to the mobile station is determined on the basis of the signals received by the BTS from the mobile station. However, the frequencies of the signals transmitted from the mobile station to the BTS are different from the frequencies used for the signals transmitted by the BTS to the mobile station. The difference in the frequencies used in the uplink and downlink signals means that the behaviour of the channel in the uplink direction may be different from the behaviour of the channel in the downlink direction. Thus the optimum direction determined for the uplink signals will not always be the optimum direction for the downlink signals. In other words, the statistical behaviour of the channel in the up-link and down-link directions are different. This also means that it is not possible to have a fast and effective (burst-by-burst basis) power control as there is in general no fast (burst-by-burst) feedback from the MS.
It has been proposed by the present inventor that a signal from a base transceiver station to a mobile station be sent in two adjacent beam directions. This means that the base station generates two or more separate beams. When those beams are adjacent one another, they should overlap. By allowing the beams to overlap the whole cell or cell sector can be covered. However, due to differences in the effective path length travelled by the signals to a beam former of the base transceiver station, adjacent beams may have an effective phase difference therebetween. Depending on the value of this phase difference, a null region may occur in the overlapping region of two adjacent beams. Any mobile station in that null region would be unable to receive signals from the base transceiver station. Another problem arises when more than one beam direction is selected. If the power of the beams is set to be equal, this can undesirably give rise to increased interference.
It is therefore an aim of certain embodiments of the present invention to address some of the problems mentioned hereinbefore.
According to a first aspect of the present invention, there is provided a method of directional radio communication between a first station and a second station, said method comprising the steps of defining at the first station a plurality of beam directions for transmitting signals to said second station, each of said beam directions being selectable; selecting a plurality of beam directions at said first station in which a signal is to be transmitted from said first station to said second s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for directional radio communication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for directional radio communication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for directional radio communication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3184590

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.