Multiple displacement amplification

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091200, C435S091520, C435S091510, C536S024300

Reexamination Certificate

active

06642034

ABSTRACT:

BACKGROUND OF THE INVENTION
The disclosed invention is generally in the field of nucleic acid amplification.
A number of methods have been developed for exponential amplification of nucleic acids. These include the polymerase chain reaction (PCR), ligase chain reaction (LCR), self-sustained sequence replication (3SR), nucleic acid sequence based amplification (NASBA), strand displacement amplification (SDA), and amplification with Q&bgr; replicase (Birkenmeyer and Mushahwar,
J. Virological Methods
, 35:117-126 (1991); Landegren,
Trends Genetics
9:199-202 (1993)).
Current methods of PCR amplification involve the use of two primers which hybridize to the regions flanking a nucleic acid sequence of interest such that DNA replication initiated at the primers will replicate the nucleic acid sequence of interest. By separating the replicated strands from the template strand with a denaturation step, another round of replication using the same primers can lead to geometric amplification of the nucleic acid sequence of interest. PCR amplification has the disadvantage that the amplification reaction cannot proceed continuously and must be carried out by subjecting the nucleic acid sample to multiple cycles in a series of reaction conditions.
A variant of PCR amplification, termed whole genome PCR, involves the use of random or partially random primers to amplify the entire genome of an organism in the same PCR reaction. This technique relies on having a sufficient number of primers of random or partially random sequence such that pairs of primers will hybridize throughout the genomic DNA at moderate intervals. Replication initiated at the primers can then result in replicated strands overlapping sites where another primer can hybridize. By subjecting the genomic sample to multiple amplification cycles, the genomic sequences will be amplified. Whole genome PCR has the same disadvantages as other forms of PCR.
Another field in which amplification is relevant is RNA expression profiling, where the objective is to determine the relative concentration of many different molecular species of RNA in a biological sample. Some of the RNAs of interest are present in relatively low concentrations, and it is desirable to amplify them prior to analysis. It is not possible to use the polymerase chain reaction to amplify them because the mRNA mixture is complex, typically consisting of 5,000 to 20,000 different molecular species. The polymerase chain reaction has the disadvantage that different molecular species will be amplified at different rates, distorting the relative concentrations of mRNAs.
Some procedures have been described that permit moderate amplification of all RNAs in a sample simultaneously. For example, in Lockhart et al.,
Nature Biotechnology
14:1675-1680 (1996), double-stranded cDNA was synthesized in such a manner that a strong RNA polymerase promoter was incorporated at the end of each cDNA. This promoter sequence was then used to transcribe the cDNAs, generating approximately 100 to 150 RNA copies for each cDNA molecule. This weak amplification system allowed RNA profiling of biological samples that contained a minimum of 100,000 cells. However, there is a need for a more powerful amplification method that would permit the profiling analysis of samples containing a very small number of cells.
Accordingly, there is a need for amplification methods that are less complicated, are more reliable, and produce greater amplification in a shorter time.
It is therefore an object of the disclosed invention to provide a method of amplifying a target nucleic acid sequence in a continuous, isothermal reaction.
It is another object of the disclosed invention to provide a method of amplifying an entire genome or other highly complex nucleic acid sample in a continuous, isothermal reaction.
It is another object of the disclosed invention to provide a method of amplifying a target nucleic acid sequence where multiple copies of the target nucleic acid sequence are produced in a single amplification cycle.
It is another object of the disclosed invention to provide a method of amplifying a concatenated DNA in a continuous, isothermal reaction.
It is another object of the disclosed invention to provide a kit for amplifying a target nucleic acid sequence in a continuous, isothermal reaction.
It is another object of the disclosed invention to provide a kit for amplifying an entire genome or other highly complex nucleic acid sample in a continuous, isothermal reaction.
SUMMARY OF THE INVENTION
Disclosed are compositions and a method for amplification of nucleic acid sequences of interest. The method is based on strand displacement replication of the nucleic acid sequences by multiple primers. In one preferred form of the method, referred to as multiple strand displacement amplification (MSDA), two sets of primers are used, a right set and a left set. Primers in the right set of primers each have a portion complementary to nucleotide sequences flanking one side of a target nucleotide sequence and primers in the left set of primers each have a portion complementary to nucleotide sequences flanking the other side of the target nucleotide sequence. The primers in the right set are complementary to one strand of the nucleic acid molecule containing the target nucleotide sequence and the primers in the left set are complementary to the opposite strand. The 5′ end of primers in both sets are distal to the nucleic acid sequence of interest when the primers are hybridized to the flanking sequences in the nucleic acid molecule. Preferably, each member of each set has a portion complementary to a separate and non-overlapping nucleotide sequence flanking the target nucleotide sequence. Amplification proceeds by replication initiated at each primer and continuing through the target nucleic acid sequence. A key feature of this method is the displacement of intervening primers during replication. Once the nucleic acid strands elongated from the right set of primers reaches the region of the nucleic acid molecule to which the left set of primers hybridizes, and vice versa, another round of priming and replication will take place. This allows multiple copies of a nested set of the target nucleic acid sequence to be synthesized in a short period of time. By using a sufficient number of primers in the right and left sets, only a few rounds of replication are required to produce hundreds of thousands of copies of the nucleic acid sequence of interest. The disclosed method has advantages over the polymerase chain reaction since it can be carried out under isothermal conditions. No thermal cycling is needed because the polymerase at the head of an elongating strand (or a compatible strand-displacement protein) will displace, and thereby make available for hybridization, the strand ahead of it. Other advantages of multiple strand displacement amplification include the ability to amplify very long nucleic acid segments (on the order of 50 kilobases) and rapid amplification of shorter segments (10 kilobases or less). In multiple strand displacement amplification, single priming events at unintended sites will not lead to artifactual amplification at these sites (since amplification at the intended site will quickly outstrip the single strand replication at the unintended site).
In another preferred form of the method, referred to as whole genome strand displacement amplification (WGSDA), a random set of primers is used to randomly prime a sample of genomic nucleic acid (or another sample of nucleic acid of high complexity). By choosing a sufficiently large set of primers of random or partially random sequence, the primers in the set will be collectively, and randomly, complementary to nucleic acid sequences distributed throughout nucleic acid in the sample. Amplification proceeds by replication with a highly processive polymerase initiating at each primer and continuing until spontaneous termination. A key feature of this method is the displacement of intervening primers during replication by the polymerase. In this w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple displacement amplification does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple displacement amplification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple displacement amplification will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182981

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.