Optical fiber ribbonizing apparatus

Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – Indefinite or running length flexible strand – rod – tube – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S180000, C156S275500, C156S379000, C385S114000, C264S001280

Reexamination Certificate

active

06655433

ABSTRACT:

This application is based on Patent Application No. 11-340260 (1999) filed Nov. 30, 1999 in Japan, the content of which is incorporated hereinto by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for ribbonizing a plurality of optical fibers in a flat form, the optical fibers being located on an optical circuit board to connect together optical elements, optical parts, optical boards, or the like for use in optical communication or optical data processing or being projected from an optical element.
2. Description of the Related Art
A technique for ribbonizing a plurality of optical fibers is disclosed, for example, in Japanese Patent No. 1860808, Japanese Patent Application Laid-open No. 5-232362 (1993), or the like. This is a mass production technique for industrially ribbonizing long optical fibers. A conventional optical fiber ribbonizing apparatus comprises a jig (hereafter referred to as “a ribbonizing jig”) installed between a supplying bobbin and a winding bobbin and having a section in which a plurality of optical fibers are aligned with one another, a section for applying an ultraviolet hardening resin to the optical fibers, and a section for hardening the resin, and uses a winding force of the winding bobbin to apply an appropriate tension to the optical fibers while moving them, thereby continuously ribbonizing the fibers. In addition, the ribbonizing jig section is closed once the long optical fibers have been set in order to achieve efficient application of an ultraviolet hardening resin or ultraviolet rays for ribbonizing the optical fibers, so that it cannot be opened or closed easily.
In general, short optical fibers, that is, pig tails are often drawn out from an I/O section of an optical part. There has thus been a need to ribbonize the pig tail section because it may have to be connected to a multi-core connector or because multiple pig tails may have to be collectively melted for connection. It is therefore necessary to develop a method and apparatus for exclusively ribbonizing short fibers.
In the above described conventional ribbonizing apparatus, however, a side to which optical fibers to be ribbonized are supplied and a side in which the ribbonized optical fibers are wound each use a bobbin, so that the length of the optical fibers required for ribbonization is at least equal to the interval between the bobbins. As a result, the conventional apparatus cannot ribbonize such short optical fibers.
Additionally, a method for moving or tensing optical fibers using bobbins is not applicable because short optical fibers are inappropriate for this method. Accordingly, ribbonizing jigs are required which can tense short optical fibers while moving them along a longitudinal direction thereof.
Further, if optical fibers are short and entangled with one another, it is important to reliably separate the fibers and align them at a predetermined position before ribbonization in order to prevent errors in arrangement of the ribbonized optical fibers.
Moreover, if short optical fibers must be collectively ribbonized into a large number of tape bundles, it is necessary to simply set the fibers in the ribbonizing jigs, allow an ultraviolet hardening resin to be reliably applied, prevent ultraviolet rays from leaking, and enable efficient oxygen purging with an inert gas in order to improve ultraviolet hardening.
An apparatus for ribbonizing short optical fibers is manufactured and sold by Furukawa Denko under the name of Optical Ribbonizer. This, however, is manual and is not suited for industrial mass production.
In addition, an optical circuit board requires a large number of fiber bundles projecting therefrom to be ribbonized at relatively small intervals. In this case, however, if the groups of fiber bundles are individually ribbonized, since the interval between a ribbonized fiber bundle and an adjacent pre-ribbonized fiber bundle is small, it is very difficult to set the fiber bundles in the ribbonizing jigs. Consequently, an exclusive apparatus is required to collectively ribbonize a plurality of fiber bundles at small intervals.
Furthermore, in the case of optical fibers such as pig tails from an optical circuit board or an optical element which have one end fixed, part of the fiber receives no ultraviolet hardening resin and fails to be ribbonized due to the interval between an ultraviolet hardening resin applying section and an ultraviolet hardening resin hardening section of the ribbonizing apparatus. This part of the optical fiber corresponds to a root thereof which is fixed and In which stress is likely to concentrate if it is effected on the fiber. Thus, the ribbonization must take reinforcement of the root into account.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an optical fiber ribbonizing apparatus that solves the various above-described problems.
In a first aspect of the present invention, there is provided an optical fiber ribbonizing apparatus that arranges a plurality of optical fibers in parallel, applies a resin to peripheries of the plurality of optical fibers, and hardens the resin to form the optical fibers into a ribbon, the apparatus comprising: a ribbonizing jig including fiber aligning means for aligning the plurality of optical fibers in parallel, resin applying means for applying the resin to the plurality of optical fibers aligned by the fiber aligning means, and resin hardening means for hardening the resin applied to the optical fibers by the resin applying means, the fiber aligning means, the resin applying means and the resin hardening means being arranged in a line in an optical fiber inserting direction; and movement means for moving at least one of the ribbonizing jig and the plurality of optical fibers in a predetermined direction relative to the other.
Here, the movement means may comprise a linear motion stage including a movement table that linearly moves in a longitudinal direction of the optical fibers and a fixed table.
The movement means may comprise a pair of rotary rollers for rotationally moving the optical fibers while vertically sandwiching them therebetween.
The movement means may comprise a belt conveyor for moving the optical fibers while holding them.
The fiber alignment means may comprise a comb-shaped member having slits for individually guiding the plurality of optical fibers.
The fiber aligning means may comprise an alignment slit member having a gap corresponding to one optical fiber and through which a plurality of optical fibers can be inserted in parallel, and a spacer sliding through the slit.
The fiber alignment means may comprise a drum having guide grooves formed along a circumferential direction of a peripheral surface thereof in such a manner that a pitch of the optical fibers increases gradually from a pitch wherein the optical fibers are closely aligned with one another.
The fiber alignment means may comprise a plate having guide grooves formed in a plane thereof in such a manner that a pitch of the optical fibers increases gradually along the plane from a pitch wherein the optical fibers are closely aligned with one another.
The resin applying means may comprise a main body having a resin vessel formed therein and first and second guide grooves formed therein for guiding the plurality of optical fibers before and after the resin vessel while aligning them, and first and second presser plates for pressing the optical fibers aligned in the first and second guide grooves, and a humped presser plate for pressing the aligned optical fibers into the resin vessel.
The first and second presser plates are movable from a first open position to a second position for pressing the optical fibers into the main body, the first and second presser plates being maintained in the second position by a magnetic force.
The first and second presser plates may press the optical fibers by sliding over the first and second guide grooves in a direction that crosses the optical fibers.
The humped presser plate is movable from a fi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical fiber ribbonizing apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical fiber ribbonizing apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber ribbonizing apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182367

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.