System and method for automated biomechanical analysis and...

Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S587000

Reexamination Certificate

active

06514219

ABSTRACT:

The present invention relates to a system and method for the biomechanically accurate measurement of posture and for providing a patient with a suitable corrective exercise program. More particularly, the present invention relates to a system and method to automatically analyse the location of anatomical markers placed over skeletal landmarks to obtain biomechanical parameters; a system and method that uses these biomechanical data to automatically detect and/or quantify postural deviations from correct anatomical alignment; a system and method to automatically generate corrective exercise routines. The present invention also relates to the use of the Internet to provide a distributed system for patient care involving image acquisition in a clinical environment, data analysis at a central server and communication between the central server and the health-care professional as well as potential follow-up and feedback between the patient and either the health-care professional or the central server or both.
BACKGROUND OF THE INVENTION
Description of Prior Art
A tree trunk grows straight up and tree branches are symmetrical around this solid core to provide a “posture” to withstand the effects of wind and gravity. We too have an optimal posture that allows us to function most efficiently. As builders and architects use plum lines to arrange the walls and supporting structures of a home, we use plumb lines to define this ideal postural alignment. In correct posture, a plumb line dropped from you ear will go through your shoulder, the middle of your pelvis, the middle of your knee, and the front of your anklebone. Your head, trunk, pelvis and knees are “stacked” one on top of the other. Deviations from this positioning can have negative consequences to your health and well being, and correcting postural alignment can make a person look and feel better. Ideal or optimal posture minimizes energy expenditure and muscle work necessary to maintain deviant posture in the face of gravitational forces. As patients become more and more proactive in their choice or health care, they will certainly demand amelioration of their disordered posture. For example, lower back pain has often been attributed to abnormal postural relationships between body segments, and is frequently a cause of patient complaints to family care physicians.
Typically, practitioners are content with a basic appreciation of a client's posture. Systematic biomechanical analyses are rarely performed because they are time intensive and require specialized equipment. Instead, only qualitative observations are often made. Specialists, such as Chiropractors and physiotherapists are sometimes trained to make postural assessments, often employing qualitative measures to assess posture and determine corrective measures. Practitioners may refer to these specialists, but again, the procedures are time and labor intensive and consequently, are expensive for the patient, who may or may not have insurance to cover these expenses. Further, qualified medical practitioners, such as family practice physicians, may want to perform such analyses but lack the specialized equipment or training to accurately assess posture based on observations alone. Consequently, a cost effective and highly automatic system is needed to assist practitioners in effective assessment and treatment of postural difficulties.
In 1998, Tonix Santé introduced a biomechanical computation system based on the manual identification of anatomical markers from analog video images. Clinicians manually identified the location of these markers on images and some biomechanical computations were performed. However, it took a long time to place markers because common scotch tape first had to be applied to patients and then markers affixed to this adhesive. There was also no automatic detection of marker placement, no automatic detection of postural deviations, and no automatic generation of exercise routines to ameliorate postural deviations. The placement of anatomical markers on the body's surface was not based on any established model of ideal postural alignment. In other automated processes for postural evaluation, the markers are placed on the patient's loose-fitting clothes, such a method lacks precision, because first, it is difficult to determine the location of appropriate structural landmarks through loose-fitting clothing, and the position of the markers may move because clothing can move in relationship to the skin surface. Also, markers can not be safely placed on the patient's skin because they are not compliant with hypoallergenic requirements.
Another deficiency of the actual method to evaluate and correct patient's posture is the loss of control of the health-care practitioner in the treatment given to his or her patient when he or she refers the patient to a specialist such as chiropractor or physiotherapist. The patient has to take several appointments from several potential specialists. Furthermore, no health-care practitioner or specialist alone can benefit from experience with thousands of patients and be able to correlate biomechanical information from these patients with appropriate treatment and results obtained. There is neither a way to share experience in an efficient way between several health-care practitioners and/or specialists treating this many patients. There is also no way to provide a quantified follow-up of progress.
SUMMARY OF THE INVENTION
One aim of the present invention is to provide a process and apparatus to acquire biomechanical position data in selecting marker positions referenced with respect to the patient's skeletal anatomy by one of skin surface features having minimal variability from one patient to the next and skeletal features palpable from a skin surface of the patient and in attaching a scanable marker on the patient at each of the marker positions, these marker positions being used to calculate the positions of body segments.
Another aim is to provide a method to analyze these body segment positions to obtain body segment biomechanical parameters and deviations.
An other aim of the present invention is to provide a method to use these biomechanical deviation values to determine postural deviations and corrective exercises to rectify these deviations.
Another aim of the present invention is to use the Internet to provide a distributed system for patient care involving image acquisition in a clinical environment, data analysis at a central server and communication between the central server and the health-care professional as well as potential follow-up and feedback between the patient and either the health-care professional or the central server or both.
In accordance with the present invention there is provided a method of acquiring biomechanical position data for use in postural analysis, this method comprising the steps of:
a) selecting a plurality of marker positions referenced with respect to an anatomy of a patient by one of:
skin surface features having minimal variability from one patient to the next; and
skeletal features palpable from a skin surface of the patient;
b) attaching a scanable marker on the patient at each of the marker positions, the step of attaching including palpating the patient to define at least some of the marker positions; instructing the patient to stand relaxed and in normal posture; and
c) scanning the markers on the patient to obtain position data for each of the marker positions.
The method in accordance with a preferred embodiment of the present invention, wherein the patient is scanned from a front, side and rear viewpoints.
The method in accordance with a preferred embodiment of the present invention, wherein the step of scanning comprises photographing the patient against a backdrop, the markers comprising contrasting visual markers, the backdrop including a plurality of scale and orientation reference marker points.
The method in accordance with a preferred embodiment of the present invention, wherein the markers comprise an adhesive layer for sticking

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for automated biomechanical analysis and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for automated biomechanical analysis and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for automated biomechanical analysis and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3177570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.