Method and device for sensing atrial depolarizations during...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S017000

Reexamination Certificate

active

06643547

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains to cardiac rhythm management devices and methods. In particular, the invention relates to methods for the detection of atrial and ventricular tachyarrhythmias.
BACKGROUND
Tachyarrhythmias are abnormal heart rhythms characterized by a rapid heart rate. Examples of tachyarrhythmias include supraventricular tachycardias such as atrial tachycardia and atrial fibrillation. The most dangerous tachyarrythmias, however, are ventricular tachycardia and ventricular fibrillation. Ventricular rhythms occur when an excitatory focus in the ventricle usurps control of the heart rate from the sinoatrial node. The result is rapid and irregular contraction of the ventricles out of electromechanical synchrony with the atria. Most ventricular rhythms exhibit an abnormal QRS complex in an electrocardiogram because they do not use the normal ventricular conduction system, the depolarization spreading instead from the excitatory focus directly into the myocardium. Ventricular tachycardia is characterized by distorted QRS complexes occurring at a rapid rate, while ventricular fibrillation is diagnosed when the ventricle depolarizes in a chaotic fashion with no recognizable QRS complexes. Both ventricular tachycardia and ventricular fibrillation are hemodynamically compromising, and both can be life-threatening. Ventricular fibrillation, however, causes circulatory arrest within seconds and is the most common cause of sudden cardiac death.
Cardioversion (an electrical shock delivered to the heart synchronously with the QRS complex) and defibrillation (an electrical shock delivered without synchronization to the QRS complex to terminate ventricular fibrillation) can be used to terminate most tachycardias. The electric shock terminates the tachycardia by depolarizing all excitable myocardium to render it refractory to further excitation. Implantable cardioverter/defibrillators (ICD's) provide this kind of therapy by delivering a shock pulse to the heart when fibrillation is detected by the device.
Another type of electrical therapy for tachycardia is antitachycardia pacing (ATP). In ATP, the heart is competitively paced with one or more pacing pulses in an effort to interrupt reentrant circuits causing the tachycardia. Modern ICD's have ATP capability so that ATP therapy is delivered to the heart when a tachycardia is detected, while a shock pulse is delivered when fibrillation occurs. Although cardioversion/defibrillation will terminate tachycardia, it consumes a large amount of stored power from the battery and results in some patient discomfort owing to the high voltage of the shock pulses. It is desirable, therefore, for the ICD to use ATP to terminate a tachyarrhythmia whenever possible. Generally, only cardioversion/defibrillation will terminate fibrillation and certain high rate tachycardias, while ATP can be used to treat lower rate tachycardias.
Cardioversion/defibrillation and anti-tachycardia pacing may also be used to treat atrial tachyarrhythmias., such as atrial fibrillation and atrial flutter. These tachyarrhythmias arise from excitatory foci in the atria. Although not immediately life-threatening, it is important to treat atrial fibrillation for several reasons. First, atrial fibrillation is associated with a loss of atrio-ventricular synchrony which can be hemodynamically compromising and cause such symptoms as dyspnea, fatigue, vertigo, and angina. Atrial fibrillation can also predispose to strokes resulting from emboli forming in the left atrium.
In current ICD's with ATP capability, ventricular fibrillation is distinguished from ventricular tachycardia using rate based criteria so that ATP or shock therapy can be delivered as appropriate. The heart rate is usually measured by detection of the time between successive R waves (i.e., ventricular depolarizations). A measured heart rate is classified as a tachycardia when the rate is in a ventricular tachycardia zone, defined as a range of rates above a specified tachycardia detection rate but below a specified fibrillation detection rate. A measured heart rate above the fibrillation detection rate is in the ventricular fibrillation zone and is classified as a fibrillation.
It is common in cardiac rhythm management devices with both atrial and ventricular sensing channels for the atrial sensing channel to be blanked after a ventricular sense for a specified blanking interval. This is done to avoid far-field sensing of ventricular depolarizations by the atrial sensing channel. If the ventricular rate is high, however, this may lead to undersensing of atrial depolarizations. Consequently, the atrial rate will be underestimated. This may lead to the device delivering ventricular anti-tachycardia therapy when a more appropriate therapy would be atrial anti-tachycardia therapy.
SUMMARY OF THE INVENTION
The present invention is a method and device for sensing atrial depolarizations during episodes of ventricular tachycardia. In most cardiac rhythm management devices that sense atrial and ventricular depolarizations, the atrial sensing channel is blanked for a specified blanking interval after detection of a ventricular sense. At high ventricular rates, atrial depolarizations may occur within the blanking interval and not be sensed. The atrial rate will then be underestimated, and an atrial tachyarrhythmia may go undetected. In accordance with the invention, when the ventricular rate is above a specified limit rate, the blanking interval for the atrial sensing channel is either shortened or blanking is discontinued altogether in order to allow sensing of atrial depolarizations that occur shortly after a ventricular sense. In the former case, the shortening of the blanking interval may be made to vary in accordance with the detected ventricular rate. In a further modification, the specificity of the atrial sensing channel may be increased when the blanking interval is shortened to lessen the possibility of far-field sensing. One way of doing this is to increase the sensing threshold of the atrial sensing channel.
The invention may be incorporated into a cardiac rhythm management device designed to treat atrial and ventricular arrhythmias by anti-tachycardia pacing and/or defibrillation shocks. In such a device, blanking of the atrial sensing channel may lead to delivery of ventricular anti-tachycardia pacing to inappropriately treat an atrial tachyarrhythmia. By correcting the underestimation of the atrial rate during such atrial tachyarrythmias, the invention allows the device to deliver atrial anti-tachycardia pacing instead. In one embodiment, if a ventricular rate is detected which is above a specified limit rate but below a fibrillation detection rate, and the detected atrial rate is higher, a trial of atrial anti-tachycardia is delivered before delivery of either ventricular anti-tachycardia pacing or a ventricular defibrillation shock.


REFERENCES:
patent: 4825870 (1989-05-01), Mann et al.
patent: 4974589 (1990-12-01), Sholder
patent: 5103820 (1992-04-01), Markowitz
patent: 5129393 (1992-07-01), Brumwell
patent: 5144949 (1992-09-01), Olson
patent: 5273035 (1993-12-01), Markowitz et al.
patent: 5342405 (1994-08-01), Duncan
patent: 5400796 (1995-03-01), Wecke
patent: 5591214 (1997-01-01), Lu
patent: 5658320 (1997-08-01), Betzold et al.
patent: 5776167 (1998-07-01), Levine et al.
patent: 5893882 (1999-04-01), Peterson et al.
patent: 6091988 (2000-07-01), Warman et al.
patent: 6459932 (2002-10-01), Mehra
patent: 6477420 (2002-11-01), Struble et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for sensing atrial depolarizations during... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for sensing atrial depolarizations during..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for sensing atrial depolarizations during... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3176476

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.