Process for manufacturing a semiconductor wafer with...

Semiconductor device manufacturing: process – Semiconductor substrate dicing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S462000, C438S928000

Reexamination Certificate

active

06642126

ABSTRACT:

BACKGROUND
The invention relates to a process for manufacturing a semiconductor arrangement, whereby in particular a wafer with a great number of semiconductor arrangements forming chips is produced, the wafer is thereafter partitioned, and in this way the semiconductor arrangements are separated, whereby at least one region of a wafer side is covered during etching of the remaining area by means of a passivation layer, and whereby the passivation layer is removed after the etching.
Providing a silicon plate with a passivation layer in order to protect these layers against an etching agent is already known from DE 196 50 821 A1. Moreover, the region to be protected is provided with a coating which has a predominant proportion of benzocyclobutene. Furthermore, an adhesion mediator of aminopropylsilane can be additionally provided. After etching of the areas lying outside the passivation layer, the passivation layer is removed, which takes place with the aid of a solvent, in particular nitric acid. Alternatively, a passivation layer can also be acted upon and removed with an oxygen plasma.
The use of solvents is disadvantageous for environmental reasons and based on cost. Moreover, it is problematic that upon removing the solvent, residues are deposited at places where it is not desired, for example at contact points. This would have a negative influence upon soldering or contacting processes.
Even removing the passivation layer by means of an oxygen plasma is costly. Even if the passivation layer can remain on the wafer, it nonetheless must be partially removed in order to expose the contact pads. Then a photolithography step is necessary for this, however, which requires a corresponding additional expense.
Procedures are also known in connection with which the wafers can be etched on one side without the side not to be etched being coated with a passivation layer. By way of example, this can take place with a so-named etching can which covers a wafer with a tight fit on one side. The necessary sealing pressure puts a mechanical stress upon the wafer so that precisely with wafer structures having thin areas, there exists the danger of the wafer breaking. Etching machines for this one-sided etching are expensive, and use of these is also avoided for technical reasons.
SUMMARY
The object of the present invention is to provide a process for simple passivation of a wafer region or of a wafer side for protection against etching solutions in connection with which the disadvantages of the state of the art are avoided and whereby especially environmentally harmful and/or expensive processes and agents are avoided.
It is proposed as a realization of this object that at least in one outer edge region of the wafer, an adhesion zone for the passivation layer is created which enters into a sealing, in particular chemical combination with the material used for the passivation layer, and that the passivation layer is removed mechanically at least in the area lying outside the adhesion zones.
Through the adhesion zones created at predetermined spots, a sealing, durable bonding takes place at these points in connection with applying the passivation or protection layer, in particular through the chemical combination taking place in these adhesion regions between adhesion zone and passivation layer, while the remaining areas covered by the passivation layer have a diminished adhesion to the passivation layer to the extent that a subsequent removal of the passivation layer is possible with little expenditure and especially without solvent.
While a circular adhesion zone provided only in the edge region of the wafer can suffice, especially with wafers with a small diameter, with wafers with a larger area it is appropriate to provide adhesion zones within the surface covered over by the passivation layer as well in order to provide additional stabilization of the passivation layer.
Also in the outer edge area of the wafer, according to another configuration of the invention, in particular in the shape of the front side of the wafer, outside the active chip zones, further adhesion zones can also be created in an area bounding the respective chip systems.
In this way, on the one hand the additional stabilization of the passivation layer is realized, and moreover, partial regions of a wafer side can also be thus protected by the passivation layer.
A preferred application is provided in connection with a reverse side etching of the wafer, for example, for manufacturing pressure sensors. Here the wafer front side having the chip systems is covered with the passivation layer.
An independent solution for implementing this in accordance with the invention provides that, outside the active chip surface in the areas bounding the respective chip systems, adhesion zones are created which enter into a sealing, especially a chemical combination, with the material used for the passivation layer, and that the passivation layer is mechanically removed at least in the area lying outside the adhesion zones.
With this process, all active chip surfaces are individually bounded by adhesion zones. With these adhesion zones, a sealing compound forms upon applying the passivation layer so that all chips are well protected and the passivation layer is stably connected with the wafer through the numerous adhesion sites.
Appropriately, the adhesion zones are created in the separation region between the individual chips, preferably by removing a layer down to the substrate coat. The separation areas are consequently at the same time used as adhesion zones, and in this way, no additional chip surface is necessary.
In connection with this, it is advantageous if the adhesion zones in the separation area are applied with a greater breadth than the breadth of the saw cut for separating the wafer. After removing the passivation layer, residues are left in the adhesion zones which are only partially removed by the saw cut when dividing the wafer. The residues of the passivation layer adhering to the saw path, which in this state cause no technical disturbance, can serve for assuring originality and origin.
Preferably a noble metal, for example palladium, if need be with an additional outer protective layer, for example of gold, is applied to the areas to be protected.
A passivation layer of noble metals enters into a chemical compound with silicon, and in this way adheres especially well in the area of the adhesion zones provided. In the event that an etching agent aggressive in relation to the noble metal, for example, palladium, must be used, the noble metal layer can also be provided with a protective layer resistant in relation to the etching agent, for example of gold.
Applying a metal layer of palladium to a MOS arrangement is indeed known from DE 196 41 777 A1. This metal layer nonetheless serves to form metal electrodes or contact pads, thus active or normal use areas, while the really undesired area of the metal layer situated outside the metal electrodes and contact pads has no technical function, and for this reason is removed after manufacturing the metal electrodes and contact pads.
A configuration of the invention provides that adhesion zones are created when structuring the standard chip passivation, especially by removing an oxide layer. Here the adhesion zones can be exposed at the same time as the available contact pads are exposed when etched free. The etching stops at the contact pads especially consisting of aluminum, while it goes further up to the silicon of the substrate in the region of the adhesion zones provided.
There also exists the possibility, however, that, with the application of the passivation layer, at the same time contact pads or similar metallic contact points are formed. In such contact point areas, polysilicon is as a rule present as a substrate which enters into a good adhesive combination with the passivation layer of metal, preferably palladium, so that in this case even the adhesion zones form contact point areas.
If the passivation layer is removed, it then remains preserved in the adhesi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for manufacturing a semiconductor wafer with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for manufacturing a semiconductor wafer with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for manufacturing a semiconductor wafer with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3173924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.