Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2001-10-31
2003-12-09
Hsieh, Shih-Wen (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C347S029000, C347S030000, C347S031000, C347S033000
Reexamination Certificate
active
06659585
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to printing devices. More specifically, the present invention relates to systems and methods of draining ink absorbed by pads located on a capping device.
BACKGROUND OF THE INVENTION
Inkjet printing mechanisms, e.g., printers, photocopiers, facsimile machines, etc., typically implement inkjet cartridges, often called “pens” to shoot drops of ink onto a sheet of print media, e.g., paper, fabric, textile, and the like. Pens typically have multiple printheads that include very small nozzles on an orifice plate through which the ink drops are fired.
The particular ink ejection mechanism within the printhead may take on a variety of different forms as known to those skilled in the art, such as those using piezoelectric or thermal inkjet technology. To print an image, the printhead is scanned back-and-forth across a print zone above the sheet, with the pen shooting drops of ink as it moves. By selectively firing ink through the nozzles of the printhead, the ink is expelled in a pattern on the print media to form a desired image (e.g., picture, chart, text and the like).
The orifice plate of the printhead has a tendency to pick up contaminants, such as paper dust, dried ink and the like, during the printing process. Such contaminants may adhere to the orifice plate either because of the presence of ink on the printhead, or because of electrostatic charges. In addition, excess dried ink can accumulate around the printhead. The accumulation of either ink or other contaminants can impair the quality of the output by interfering with the proper application of ink to the print media. In addition, if color pens are used, each printhead may have different nozzles which each expel different colors. If ink accumulates on the orifice plate, mixing of different colored inks (cross-contamination) can result which may lead to adverse affects on the quality of the resulting printed product. Furthermore, the nozzles may become clogged, particularly if the printheads are left uncapped for a relatively long period of time. For at least these reasons, it is desirable to clear the printhead orifice plate of such contaminants on a substantially routine basis.
In this respect, servicing operations, including ink drop detections, wiping and capping of the orifice plate, and the like, are typically performed during, and/or after completion of the performance of a printing operation. In performing the servicing operations, inkjet printing mechanisms typically implement a service station located along the scanning direction. The service station is typically equipped with a plurality of components designed to carry out the servicing operations.
The wiper is designed to scrape off paper dust or other debris that may accumulate on the orifice plate as well as various other portions of the printheads. These wipers are typically made of a elastomeric material, for instance a nitrile rubber, ethylene polypropylene diene monomer (EPDM) elastomer, or other types of rubber-like materials. The wiping action is usually achieved by either moving the printhead across the wiper, or moving the wiper across the printhead. Unfortunately, such wiping operations have oftentimes been found to be inadequate to effectively remove paper dust and other debris. In addition, such wiping actions may cause excess ink to build up on the lower side portions of the printheads as well as degradation of the wiper itself. Furthermore, ink may become dried on the surface of the wiper and may cause it to become less effective.
The capping operation is typically performed through use of a cap. The cap is normally composed of a substrate that supports a seal for humidically sealing the printhead nozzles from contaminants and drying. Typically, the seal is an elastomeric enclosure having sealing lips which surround the nozzles and form an air-tight seal at the printhead face (i.e., nozzle plate). The cap is typically maneuvered into position on the printhead through vertical motion of the cap from the service station. The cap is not equipped to clean off the nozzle plate or the printhead but merely provides a seal to protect the nozzles.
SUMMARY OF THE INVENTION
According to a preferred embodiment, the present invention pertains to a system for draining ink from a device for receiving ink from an ink ejection element. The system includes a transfer member located between the device and a receptacle. The transfer member is operable to enable ink to travel from the device to the receptacle. The device includes at least one pad having a first portion and a second portion. The first portion is configured to absorb ink and the at least one pad is configured to enable absorbed ink to travel to the second portion. The second portion is positioned on the device to enable the absorbed ink to be conveyed to the transfer member.
According to an aspect, the present invention relates to a method of draining ink from a device configured to receive ink from an ink ejection element. In the method, ink is received from the ink ejection element in at least one pad. The received ink is enabled to be transferred from the at least one pad to a transfer member. The transferred ink in the transfer member is enabled to be conveyed to an absorbent mass located in a receptacle.
According to another aspect, the present invention pertains to an image forming mechanism. The mechanism includes an ink ejection element having a plurality of nozzles and is configured to undergo servicing operations. The service station includes a wiper for selectively wiping the ink ejection element and a carriage movably supporting a device for receiving ink from the ink ejection element. A transfer member is located between the device and a receptacle. The transfer member is operable to enable ink to travel from the device to the receptacle. The device includes at least one pad having a first portion configured to absorb ink and a second portion. The at least one pad is configured to enable absorbed ink to travel to the second portion. The second portion is positioned on the device to enable the absorbed ink to be conveyed to the transfer member.
In comparison to known printing mechanisms and techniques, certain embodiments of the invention are capable of achieving certain aspects, including, removal of accumulated ink from absorbent pads, selective or full-time engagement of a transfer member and the pads to remove ink from the pads, and the embodiments of the present invention may be implemented in conjunction with pre-existing capping systems in a relatively simple manner. Those skilled in the art will appreciate these and other advantages and benefits of various embodiments of the invention upon reading the following detailed description of a preferred embodiment with reference to the below-listed drawings.
REFERENCES:
patent: 4965596 (1990-10-01), Nagoshi et al.
patent: 5997128 (1999-12-01), Lou et al.
patent: 0 744 294 (1996-11-01), None
Calvo Lidia
Monclus Antonio
Urrutia Martin
Hewlett-Packard Development Company LP.
Hsieh Shih-Wen
LandOfFree
System and method for draining ink from ink receiving devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for draining ink from ink receiving devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for draining ink from ink receiving devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3172932