Semiconductor memory and method of operating the same

Static information storage and retrieval – Addressing – Sync/clocking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S222000, C365S230060

Reexamination Certificate

active

06667933

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to technologies for low power consumption and high speed of a semiconductor memory.
The present invention also relates to a semiconductor memory having memory cells with capacitors, and more particularly to a technology for performing refresh of the memory cells internally and automatically.
2. Description of the Related Art
Semiconductor memories such as a DRAM typically use common address terminals to receive address signals as a row address and a column address separately, and perform read, write, or other operations. For example, a 64-Mbit DRAM having an 8-bit I/O (address space; 8 Mbits) uses two bank address terminals and twelve address terminals to receive a 12-bit row address signal and a 9-bit column address signal. This DRAM, for example, receives an active command and a row address signal (upper address) in synchronization with a first clock signal, and receives a read command and a column address (lower address) in synchronization with the next clock signal. Here, all the word lines corresponding to the row address are activated to read out the data retained in the memory cells. The read data is amplified by sense amplifiers. In this example, the activation of the word lines selects one out of 16 k memory regions so that data is rewrite of 4 k memory cells. Then, the memory cells to read/write data from/to are selected by the column address signal, followed by a read operation or a write operation.
Now, a rise in the number of bits of the row address signal can reduce the size of a memory region to be selected at a time, and decrease the number of word lines to be activated simultaneously. The power consumption during read and write operations depends on the number of word lines to be activated as well as the number of sense amplifiers to be operated in accordance with the activation of the word lines. Thus, the greater the number of bits of the row address signal is, the lower the operating power consumption becomes.
For example, if the above-mentioned DRAM has two bank address terminals and thirteen address terminals to receive a 13-bit row address and an 8-bit column address, the number of word lines to be activated at a time will be cut by half, with a reduction in power consumption.
The greater number of bits of the row address signal, however, increases the number of terminals on the package, which makes the package larger in outside dimensions. As a result, the system board to mount the DRAM on comes to drop in parts mounting density. The parts mounting density can also be lowered by a rise in the number of lines on an address bus and an increase in the area of patterned wiring on the system board. The increased number of address terminals also leads to a greater chip size.
Meanwhile, a great number of DRAMs are used not only in mainframes and personal computers but also in consumer appliances. Generally, most DRAMs to be mounted on consumer appliances have only to operate at several tens of megahertz. Conventional DRAMs, however, have not been developed specifically for consumer appliances. Therefore, the consumer appliances to mount DRAMs on have had to adopt high-speed DRAMs targeted for computers. DRAMs of this type are developed for high-speed operations, and are often high in power consumption. In the fields of battery-driven consumer appliances such as cellular phones and digital cameras, DRAMs of low power consumption have been hoped for.
DRAM memory cells store information by having their capacitors charged. This requires that DRAM-mounted systems refresh memory cells at predetermined intervals to maintain the information written in the memory cells. Read and write operations to memory cells cannot be performed during refresh operations. This means the tendency of the above-mentioned systems to drop in I/O bus occupation rate. In particular, concerning DRAMs to be operated at lower frequencies which have been hoped for in the fields of consumer appliances and the like, there has been made no proposal for optimizing refresh operations thereof to improve the I/O bus occupation rate.
SUMMARY OF THE INVENTION
An object of the present invention is to reduce the power consumption of a semiconductor memory.
Another object of the present invention is to optimize the refresh operations of memory cells in a DRAM being operative at a low frequency, for the sake of improving an I/O bus occupation rate.
Still another object of the present invention is to reduce the time taken for the supply of a command to the completion of a read or write operation in the semiconductor memory being operative at a low frequency.
According to one of the aspects of the present invention, a semiconductor memory receives a plurality of commands in succession and performs a memory operation to read/write data from/to memory cells in accordance with the combination of these commands. Here, a word line for controlling transfer switches of the memory cells is activated after the reception of one of the commands except the first command. This allows a control circuit for activating the word line to be operated at a frequency lower than heretofore, which reduces the power consumption.
There is a sufficient period between the supply of the first command and the activation of the word line. Therefore, this period can be utilized to operate internal circuits without being recognized from exterior. The internal circuits include, for example, a refresh control circuit for automatically performing a refresh operation of the memory cells, and a self-test circuit for checking circuit functions.
According to another aspect of the present invention, address signals for designating the memory cells to be operated are supplied along with the commands. The word line is activated based on the address signal supplied along with the first command as well as part of the address signal supplied along with at least one of the commands except the first command. Activating the word line by using more address signals than heretofore can reduce the number of word lines to be activated simultaneously. In other words, the memory regions to be selected by these address signals become smaller. As a result, the scale of the circuits to be operated for memory operations can be decreased for a reduction in power consumption.
According to another aspect of the present invention, the word line includes a main-word line and a plurality of sub-word lines branching off from this main-word line. The sub-word lines are connected to the transfer switches of the memory cells. The main-word line corresponds to, for example, an upper address and is activated during a plurality of memory operations. The sub-word lines correspond to, for example, lower addresses and are activated upon each of the memory operations. Activating the plurality of sub-word lines in succession can operate all the memory cells that are selectable by the activated main-word line. That is, consecutive accesses typically referred to as page operations can be performed in a wider memory region.
According to another aspect of the present invention, the word line includes a main-word line and a plurality of sub-word lines branching off from this main-word line, the sub-word lines being connected to the transfer switches of the memory cells. The main-word line and the sub-word lines are activated during a plurality of memory operations. Performing page operations without inactivating the sub-word lines allows a reduction in the power consumption of a control circuit for the sub-word lines. That is, the power consumption during operations can be reduced further.
According to another aspect of the present invention, the word line includes a main-word line and a plurality of sub-word lines branching off from this main-word line, the sub-word lines being connected to the transfer switches of the memory cells. The main-word line is activated in accordance with the address signal supplied along with the first command. The sub-word lines are activated in accordance with the address si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor memory and method of operating the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor memory and method of operating the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory and method of operating the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172543

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.