Method for image generation by magnetic resonance

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S307000, C324S309000

Reexamination Certificate

active

06650925

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a method for generating an image by magnetic resonance, and in particular to such a method employing a number of reception antennas, for picking up magnetic resonance signals, the respective antennas having different sensitivity profiles.
2. Description of the Prior Art
In the measurement sequences for magnetic resonance imaging that have been standard, and employed with a given size and resolution of the imaging, the time required for generating a magnetic resonance image is defined by the intensity of the gradient magnetic field used for the topical resolution. The gradient coils with which the gradient magnetic field is generated are becoming increasingly powerful and the measurements are becoming increasingly faster as a result. However, a physiologically prescribed limit human tissue (stimulation limit) that cannot be transgressed exists because of the magnetic fields that are rapidly switched in such sequences and because of the electrical voltages that are thereby induced in the tissue of the patient.
Recently, methods have been developed that are referred to as coil sensitivity and coding methods, or partial parallel acquisition (PPA). These methods use the sensitivity profiles of the individual antennas of an antenna array in order to reduce the phase-coding steps needed for the topical resolution and to thus shorten the measurement time.
Thus, the article by Hutchinson and Raff, “Fast MRI Data Acquisition Using Multiple Detectors”, in Magnetic Resonance in Medicine, Vol. 6, pp. 87-91 (1988), describes a method wherein only one phase-coding step is required for producing an image. An antenna array having a number of independent individual antennas and radio-frequency channels is employed, the number corresponding exactly to the number of phase-coding steps given conventional, sequential phase-coding with phase-coding gradient fields. This method is difficult to employ because of the high number of required reception channels.
The article by James R. Kelton, Richard L. Magin, Steven M. Wright, “An Algorithm For Rapid Image Acquisition Using Multiple Receiver Coils”, Proceedings of the SMRM 8
th
Annual Meeting, Amsterdam, 1989, p. 1172, describes a measuring method wherein the idea of Hutchinson and Raff was expanded. The number of individual antennas in the antenna array described therein amounts to a power of two. The measuring time is reduced corresponding to this number. The number of independent radio-frequency reception channels can be selected significantly lower then the number of phase-coding steps otherwise required for the image determination.
J. B. Ra and C. Y. Rim, in the article “Fast Imaging Method Using Multiple Receiver Coils with Sub-Encoding Data Set”, which appeared in Proceedings of the SMRM 10
th
Annual Meeting, San Francisco, 1991, p. 1240, have described a method wherein, despite an under-sampling in the phase-coding direction, an unambiguous, convolution-free imaging of a region to be imaged (field of view) can be achieved. To this end, the reception signals of a number of independent reception antennas are reconstructed into intermediate images using a Fourier transformation, but these intermediate images are still ambiguous. Using the sensitivity profiles of the antennas employed, these intermediate images are processed to form a convolution-free ultimate image.
As reported in the article by J. B. Ra, C. Y. Rim, “Fast Imaging Using Sub-Encoding Data Sets from Multiple Detectors”, in Magnetic Resonance in Medicine, Vol. 30, pp. 142-145, 1993, the method outlined above was tested at a phantom with a four-channel system. A speed-up of the measuring time with a factor of 4 was thereby achieved. A method also is described in this article with which the speed-up factor can be selected lower then the number of independent reception antennas.
A development of the fast imaging method described by Kelton et al and Ra/Rim is disclosed in PCT Application WO 99/54746. The inverse sensitivity matrices required in the processing of the intermediate images are replaced in this version by generalized inverse sensitivity matrices. For defining the sensitivity profiles required for the reconstruction of the ultimate image, a reference measurement having the same or a lower resolution as in the actual image production is implemented before the actual registration. To that end, the magnetic resonance signals are measured with the individual antennas in the antennas array as well as with the whole-body antenna permanently installed in the magnetic resonance apparatus. The sensitivity profile of the whole-body antenna is constant enough in order to be able to be used as a reference. The complex images (in the mathematical sense) of the individual antennas obtained after the Fourier transformation and the reference image of the whole body antenna are placed into relationship with one another, and the complex sensitivity profiles (in the mathematical sense) of the individual antennas are obtained. These are then employed for the reconstruction in the following, actual measurement. A disadvantage of this version is that the required measuring time is lengthened by the “pre-scan”. It generally applies in the measurement of magnetic resonance images that the signal-to-noise ratio is proportional to the square root of the measurement time. Since the pre-scan, however, is employed only in order to determine the sensitivity profiles of the individual antennas in the antenna array, the signal-to-noise ratio is not improved despite a lengthened measurement time. The relationship of the signal-to-noise ratio to the square root of the measurement time is poorer in this version than in conventional methods when the measurement time required for the pre-scan is also taken into consideration.
U.S. Pat. No. 5,910,728 discloses another method with which the measurement time can be reduced by omitting phase-coding steps. An antenna array having independent individual antennas is also employed therein. The reconstruction of the missing phase-coding steps ensues, however, in the spatial frequency domain (k-space) and not in the image space as in the above methods. Due to the specific type of reconstruction of the missing k-space rows, this method is also called SMASH (simultaneous acquisition of special harmonics). It is assumed, however, that the sensitivity profiles of the individual antennas do not vary greatly in the frequency coding direction. Another pre-requisite for a convolution-free reconstruction of a magnetic resonance image is an exact knowledge of the sensitivity profiles of the individual antennas employed. Since the sensitivity profiles are also patient-dependent, they must usually be measured with each patient in the examination position.
In the method described in the article by P. M. Jakob, M. A. Griswold, R. R. Edelman, D. K. Sodickson, “AUTO SMASH: A self-calibrating technique for SMASH imaging”, in 1998 in Magnetic Resonance Materials in Physics, Biology and Medicine, Vol. 7, pages 42-54, a calibration step with a corresponding phase-coding is implemented in addition to the reduced SMASH phase-coding steps. The sensitivity profiles of the individual antennas are determined therefrom during the measurement, and the correlation between the under-sampled SMASH signals and the additional calibration signals is analyzed.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method for fast image generation by means of magnetic resonance, whereby the sensitivity profiles of the individual antennas in the antenna array are determined in a simple way.
This object is achieved in accordance with the invention in a method for image generation by magnetic resonance, wherein a number of independent reception antennas having sensitivity profiles differing from one another are employed, and wherein in radio-frequency excitation pulses and gradient pulses are emitted into an imaging volume for generating location-coded magnetic resonance signals, the magnetic resona

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for image generation by magnetic resonance does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for image generation by magnetic resonance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for image generation by magnetic resonance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172407

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.